
MATLAB®

App Building

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® App Building
© COPYRIGHT 2000–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2000 Online Only New for MATLAB 6.0 (Release 12)
June 2001 Online Only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online Only Revised for MATLAB 6.6 (Release 13)
June 2004 Online Only Revised for MATLAB 7.0 (Release 14)
October 2004 Online Only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online Only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online Only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online Only Revised for MATLAB 7.2 (Release 2006a)
May 2006 Online Only Revised for MATLAB 7.2
September 2006 Online Only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online Only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online Only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online Only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online Only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online Only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online Only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online Only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online Only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online Only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online Only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online Only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online Only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online Only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online Only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online Only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online Only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online Only Revised for MATLAB 8.5 (Release 2015a)
September 2015 Online Only Revised for MATLAB 8.6 (Release 2015b)
March 2016 Online Only Revised for MATLAB 9.0 (Release 2016a)
September 2016 Online Only Revised for MATLAB 9.1 (Release 2016b)
March 2017 Online Only Revised for MATLAB 9.2 (Release 2017a)
September 2017 Online Only Revised for MATLAB 9.3 (Release 2017b)
March 2018 Online Only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online Only Revised for MATLAB 9.5 (Release 2018b)
March 2019 Online Only Revised for MATLAB 9.6 (Release 2019a)
September 2019 Online Only Revised for MATLAB 9.7 (Release 2019b)
March 2020 Online Only Revised for MATLAB 9.8 (Release 2020a)
September 2020 Online Only Revised for MATLAB 9.9 (Release 2020b)
March 2021 Online Only Revised for MATLAB 9.10 (Release 2021a)
September 2021 Online Only Revised for MATLAB 9.11 (Release 2021b)
March 2022 Online Only Revised for MATLAB 9.12 (Release 2022a)

Introduction to Creating Apps

About Apps in MATLAB Software
1

Ways to Build Apps . 1-2
Build an App . 1-2
Build a Live Editor Task . 1-3

How to Create a App with GUIDE
2

Files Generated by GUIDE . 2-2
Code Files and FIG-Files . 2-2
Code File Structure . 2-2
Adding Callback Templates to an Existing Code File 2-3
About GUIDE-Generated Callbacks . 2-3

App Designer

App Designer Basics
3

Create and Run a Simple App Using App Designer 3-2
Run the Tutorial . 3-2
Tutorial Steps for Creating the App . 3-2

GUIDE Migration Strategies . 3-7
Export GUIDE App to MATLAB File . 3-7
Migrate GUIDE App to App Designer . 3-8

Display Graphics in App Designer . 3-15
App Designer Graphics Overview . 3-15
Display Graphics on Existing Axes . 3-15
Display Graphics in Container . 3-16
Create Axes Programmatically . 3-16

v

Contents

Use Functions with No Target Argument . 3-17
Use Functions That Don't Support Automatic Resizing 3-17
Unsupported Functionality . 3-18

App Designer Preferences . 3-19

Component Choices and Customizations
4

App Building Components . 4-2
Common Components . 4-2
Axes . 4-6
Containers and Figure Tools . 4-7
Dialogs and Notifications . 4-9
Instrumentation . 4-12
Extensible Components . 4-13
Toolbox Components . 4-14

Table Array Data Types in App Designer Apps 4-15
Logical Data . 4-15
Categorical Data . 4-15
Datetime Data . 4-16
Duration Data . 4-16
Nonscalar Data . 4-17
Missing Data Values . 4-18
Example: App that Displays a Table Array . 4-18

Add UI Components to App Designer Programmatically 4-20
Create the Component and Assign the Callback 4-20
Write the Callback . 4-20
Example: Confirmation Dialog Box with a Close Function 4-21
Example: App that Populates Tree Nodes Based on a Data File 4-21

Create HTML File That Can Trigger or Respond to Data Changes
. 4-23

Include Setup Function in Your HTML File 4-23
Sample HTML File . 4-23
Debug an HTML File . 4-25

App Layout
5

Lay Out Apps in App Designer Design View . 5-2
Customize Components . 5-3
Align and Space Components . 5-4
Group Components . 5-6
Reorder Components . 5-6
Modify Tab Focus Order of Components . 5-7
Arrange Components in Containers . 5-8

vi Contents

Create and Edit Context Menus in App Designer 5-9

Manage Resizable Apps in App Designer . 5-11
Resizing Graphics Objects with Normalized Position Units 5-11
Alternatives to Default Auto-Resize Behaviors 5-11

Use Grid Layout Managers in App Designer 5-13
Add and Configure Grid Layout Manager . 5-13
Convert Components from Pixel-Based Positions to Grid Layout

Manager . 5-13
Convert Components from Grid Layout Manager to Pixel-Based

Positions . 5-14
Example: Convert Components to Use Grid Layout Manager Instead of

Pixel-Based Positions . 5-15

Apps with Auto-Reflow . 5-17
What is Auto-Reflow? . 5-17
Create New App with Auto-Reflow . 5-18
Convert Existing App to Use Auto-Reflow . 5-18
Remove Auto-Reflow Behavior . 5-19
Example: App with Auto-Reflow . 5-19

App Programming
6

Manage Code in App Designer Code View . 6-2
Manage Components, Functions, and Properties 6-2
Identify Editable Sections of Code . 6-3
Program Your App . 6-3
Fix Code Problems and Run-Time Errors . 6-6
Personalize Code View Appearance . 6-7

Startup Tasks and Input Arguments in App Designer 6-8
Create a startupFcn Callback . 6-8
Define Input App Arguments . 6-8

Create Multiwindow Apps in App Designer . 6-11
Overview of the Process . 6-11
Send Information to the Dialog Box . 6-12
Return Information to the Main App . 6-13
Manage Windows When They Close . 6-13
Example: Plotting App That Opens a Dialog Box 6-14

Callbacks in App Designer . 6-15
Create Callback Functions . 6-15
Program Callback Functions . 6-17
Share Callbacks Between Multiple Components 6-18
Create and Assign Callbacks Programmatically 6-18
Search for Callbacks in Your Code . 6-19
Change or Disconnect Callbacks . 6-19
Delete Callbacks . 6-20
Example: App with a Slider Callback . 6-21

vii

Reuse Code Using Helper Functions . 6-22
Create a Helper Function . 6-22
Managing Helper Functions . 6-23
Example: Helper Function that Initializes Plots and Displays Updated

Data . 6-23

Share Data Within App Designer Apps . 6-25
Example: Share Plot Data and a Drop-Down List Selection 6-26

Compatibility Between Different Releases of App Designer 6-28
Save Copy As Versus Save As . 6-29
Opening Apps for Editing in a Newer Release 6-29

Use One Callback for Multiple App Designer Components 6-30
Example of a Shared Callback . 6-30

App Designer Examples
7

App That Calculates and Plots Data Based on Numerical Input 7-2

App with Auto-Reflow That Updates Plot Based on User Selections
. 7-3

App That Uses Grid Layout to Manage Component Positions and
Resizing . 7-4

App That Displays Data in a Hierarchy Using Tree 7-5

Create App That Uses Multiple Axes to Display Results of Image
Analysis . 7-6

Create Polar Axes Programmatically in an App 7-7

Create App with a Table That Can Be Sorted and Edited Interactively
. 7-8

Create App with Timer Object Configured Programmatically 7-10

Create App with Timer Object that Queries Website Data 7-12

Share Data in Multiwindow Apps . 7-14

Display HTML Elements Styled by a Cascading Style Sheet 7-15

viii Contents

Advanced App Designer Examples
8

Organize App Data Using MATLAB Classes . 8-2
Open App Designer App . 8-3
Write a MATLAB Class to Manage App Data 8-3
Test Algorithm . 8-5
Share Data with App . 8-6
Pulse Generator App That Stores Data in a Class 8-6

Create Responsive Apps . 8-8
Improve App Startup Time . 8-8
Improve App Update Time . 8-8
Improve App Resize Behavior . 8-9
Improve App Responsiveness to User Input 8-10
Improve Performance of Graphics in Your App 8-11

Improve App Startup Time . 8-12
Improve Startup Time in Apps with Multiple Tabs 8-12
Improve Startup Time in Apps with Large Trees 8-13

Find and Create UI Components and Charts 8-16
Find Community-Authored Components and Charts 8-16
Create Your Own Components and Charts . 8-16

Keyboard Shortcuts
9

App Designer Keyboard Shortcuts . 9-2
Shortcuts Available Throughout App Designer 9-2
Component Browser Shortcuts . 9-2
Design View Shortcuts . 9-3
Code View Shortcuts . 9-7

Create UIs Programmatically

Lay Out a Programmatic UI
10

Lay Out Apps Programmatically . 10-2
Manage Figure Size and Location . 10-2
Lay Out UI Components . 10-3
Change Front-to-Back Component Order . 10-7

Manage App Resize Behavior Programmatically 10-10
Use a Grid Layout Manager . 10-10

ix

Write Code to Manage Resize Behavior . 10-12
Turn Off Resizing of Specific Components 10-15
Turn Off App Resizing Entirely . 10-16

DPI-Aware Behavior in MATLAB . 10-17
Visual Appearance . 10-17
Using Object Properties . 10-19
Using print, getframe, and publish Functions 10-20

Create and Manage Callbacks Programmatically
11

Write Callbacks for Apps Created Programmatically 11-2
Callback Function Arguments . 11-2
Specify a Callback Function . 11-3

Share Data Among Callbacks . 11-9
Store App Data . 11-9
Access App Data From Callback Functions 11-9
Access Data in UserData . 11-10
Pass Input Data to Callbacks . 11-12
Create Nested Callback Functions . 11-13

Interrupt Callback Execution . 11-15
Interrupted Callback Behavior . 11-15
Control Callback Interruption Behavior . 11-15

Developing Classes of UI Component Objects
12

Develop Custom UI Components Programmatically 12-2
Structure of a UI Component Class . 12-2
Constructor Method . 12-3
Public and Private Property Blocks . 12-3
Event Block . 12-4
Setup Method . 12-5
Update Method . 12-5
Example: Color Selector UI Component . 12-6

Manage Properties of Custom UI Components Programmatically
. 12-9

Initialize Property Values . 12-9
Validate Property Values . 12-9
Customize the Property Display . 12-10
Optimize the update Method . 12-11
Example: Optimized Polynomial Fit UI Component with Customized

Property Display . 12-12

x Contents

Configure Custom UI Components for App Designer 12-17
Custom UI Component Prerequisites . 12-17
Configure Custom UI Component . 12-18
View Configured UI Component in App Designer 12-19
Reconfigure Custom UI Component . 12-20
Remove UI Component from App Designer 12-21
Share Configured UI Component . 12-22
Troubleshoot Missing Custom UI Component 12-22

Customize Properties of HTML UI Components 12-24
Custom Component Overview . 12-24
RoundButton Class Implementation . 12-25

Create Custom UI Components in App Designer
13

Create a Simple Custom UI Component in App Designer 13-2
Component Creation Overview . 13-2
Design Component Appearance . 13-5
Design Component Interface . 13-5
Verify Component Behavior . 13-8
Configure Component for Use in Apps . 13-9

Define Custom UI Component Startup Tasks in App Designer . . . 13-11
Component Setup Overview . 13-11
Add PostSetupFcn Callback . 13-11
Example: Timer Component That Performs Startup Tasks 13-11

Create Public Properties for Custom UI Components in App Designer
. 13-13

Create New Public Property . 13-13
Configure Public Property . 13-16
Verify Public Property . 13-17
Full Example: FileSelector Component . 13-19

Create Callbacks for Custom UI Components in App Designer . . . 13-21
Relationship Between Events and Public Callbacks 13-21
Create New Event . 13-22
Notify Event to Execute Callback . 13-23
Verify Callback . 13-24
Full Example: FileSelector Component . 13-25

Write Property Set Methods for Custom UI Components in App
Designer . 13-26

IP Address Component Overview . 13-26
Create a Property Set Method . 13-27
Perform Custom Property Validation . 13-27
Verify Property Validation Behavior . 13-28

Modularize Your App by Creating a Custom UI Component 13-31

xi

Verify Behavior of Custom UI Components in App Designer 13-36
Run Component . 13-36
Create Component from Command Window 13-36
Add Component to App . 13-38

Create Custom UI Component with a Chart in App Designer 13-40

Create Custom Button with Hover Effect Using HTML 13-43

Transition or Maintain figure-Based Apps
14

Update figure-Based Apps to Use uifigure . 14-2
Overview for Updating Your App . 14-2
Capabilities Only Available with UI Figures 14-2
Differences Between figure-Based and uifigure-Based Apps 14-3

Update App Figure and Containers . 14-7
Replace Calls to figure with uifigure . 14-7
Adjust Container Positions . 14-7

Update UIControl Objects and Callbacks . 14-11
Replace uicontrol Function Calls . 14-11
Update Component Properties . 14-13
Update Callbacks . 14-15

Update Dialog Boxes . 14-18

Examples of Programmatic Apps
15

Create and Run a Simple Programmatic App 15-2

Programmatic App That Displays a Table . 15-8

Style Cells in a Table UI Component . 15-15
Create Table UI Component . 15-15
Modify Background Color of Table Rows . 15-15
Display Icons in Table Cells . 15-16
Format Equations and Symbols in Table Column 15-17
Remove Style . 15-18

xii Contents

Live Editor Task Development
16

Live Editor Task Development Overview . 16-2
Define Live Editor Task Subclass . 16-2
Configure Live Editor Task Metadata . 16-8
Use Custom Live Editor Task . 16-10

Create Simple Live Editor Task . 16-14

Share Live Editor Tasks . 16-20

Create UIs with GUIDE

GUIDE Preferences and Options
17

GUIDE Preferences . 17-2
Set Preferences . 17-2
Confirmation Preferences . 17-2
Backward Compatibility Preference . 17-4
All Other Preferences . 17-4

GUIDE Options . 17-8
The GUI Options Dialog Box . 17-8
Resize Behavior . 17-8
Command-Line Accessibility . 17-9
Generate FIG-File and MATLAB File . 17-10
Generate FIG-File Only . 17-11

Lay Out a UI Using GUIDE
18

Set the UI Window Size in GUIDE . 18-2
Prevent Existing Objects from Resizing with the Window 18-2
Set the Window Position or Size to an Exact Value 18-2
Maximize the Layout Area . 18-3

Add Components to the GUIDE Layout Area 18-4
Place Components . 18-4
User Interface Controls . 18-8
Panels and Button Groups . 18-22
Axes . 18-26
Table . 18-29
Resize GUIDE UI Components . 18-37

xiii

Create Menus for GUIDE Apps . 18-40
Menus for the Menu Bar . 18-40
Context Menus . 18-47

Programming a GUIDE App
19

Write Callbacks in GUIDE . 19-2
Callbacks for Different User Actions . 19-2
GUIDE-Generated Callback Functions and Property Values 19-4
GUIDE Callback Syntax . 19-4
Share Data Among GUIDE Callbacks . 19-5
GUIDE Example: Share Slider Data Using guidata 19-10
GUIDE Example: Share Data Between Two Apps 19-10
GUIDE Example: Share Data Among Three Apps 19-11
Renaming and Removing GUIDE-Generated Callbacks 19-13

Callbacks for Specific Components . 19-14
How to Use the Example Code . 19-14
Push Button . 19-14
Toggle Button . 19-14
Radio Button . 19-15
Check Box . 19-15
Edit Text Field . 19-16
Slider . 19-17
List Box . 19-17
Pop-Up Menu . 19-18
Panel . 19-19
Button Group . 19-20
Menu Item . 19-21
Table . 19-23
Axes . 19-24

Examples of GUIDE UIs
20

GUIDE App With Parameters for Displaying Plots 20-2
Open and Run the Example . 20-2
Examine the Code . 20-3

Interactive List Box App in GUIDE . 20-6
Open and Run The Example . 20-6
Examine the Layout and Callback Code . 20-7

Automatically Refresh Plot in a GUIDE App 20-9
Open and Run the Example . 20-9
Examine the Code . 20-10

xiv Contents

App Packaging

Packaging GUIs as Apps
21

Get and Create Apps . 21-2
What Is an App? . 21-2
Where to Get Apps . 21-2
Why Create an App? . 21-3
Best Practices and Requirements for Creating an App 21-3

Package Apps From the MATLAB Toolstrip . 21-5

Package Apps in App Designer . 21-7

Modify Apps . 21-9

Ways to Share Apps . 21-10
Share MATLAB Files Directly . 21-10
Package Your App . 21-12
Create a Deployed Web App . 21-13
Create a Standalone Desktop Application 21-13

MATLAB App Installer File — mlappinstall 21-15

App Packaging Dependency Analysis . 21-16

xv

Introduction to Creating Apps

17

About Apps in MATLAB Software

1

Ways to Build Apps
You can use MATLAB to build interactive user interfaces that can be integrated into various
environments. There are two types of user interfaces you can build:

• Apps — Self-contained interfaces that perform operations based on user interactions
• Live Editor tasks — Interfaces that can be embedded into a live script and that generate code as

users explore parameters

The way that you build and share these interfaces, as well as the main file type for the interface,
differs depending on the interface type. This table shows the differences.

Type Ways to Build File Type Sharing Options
App Interactively,

using App
Designer

.mlapp • Distribute the main interface file and
supporting files directly

• Package as a single file
• Deploy as a web app that can run in a web

browser (requires MATLAB Compiler™)
• Create a standalone desktop application

(requires MATLAB Compiler)
Programmatical
ly, using
MATLAB
functions

.m (MATLAB
script, function,
or class file)

• Distribute the main interface file and
supporting files directly

• Package as a single file
• Create a standalone desktop application

(requires MATLAB Compiler)
Live Editor task Programmatical

ly, using the
matlab.task.
LiveTask base
class

.m (MATLAB
class file)

• Distribute the main interface file and
supporting files directly

Build an App
To create a self-contained user interface, build an app. You can build an app in multiple ways:

• Interactively, using App Designer
• Programmatically, using MATLAB functions

Each of these approaches offers a different workflow and a slightly different set of functionalities. The
best choice for you depends on your project requirements and how you prefer to work.

Use App Designer to Build Apps Interactively

App Designer is a rich interactive environment introduced in R2016a, and it is the recommended
environment for building apps in MATLAB. It includes a fully integrated version of the MATLAB
Editor. The layout design and code views are tightly linked so that changes you make in one view
immediately affect the other. A larger set of interactive components is available, including date
picker, tree, and image components. There are also features like a grid layout manager and automatic
reflow options to make your app detect and adapt to changes in screen size. For more information,
see “Develop Apps Using App Designer”.

1 About Apps in MATLAB Software

1-2

Use MATLAB Functions to Build Apps Programmatically

You can also code the layout and behavior of your app entirely using MATLAB functions. In this
approach, you create a figure to serve as the container for your UI by using either the uifigure or
figure function. Then, you add components to it programmatically. Each type of figure supports
different components and properties. The uifigure function is the recommended function for
building new apps because it creates a figure that is specifically configured for app building. UI
figures support the same types of modern graphics and interactive UI components that App Designer
supports. For more information, see “Develop Apps Programmatically”.

Build a Live Editor Task
To create an interface that can be embedded into a live script, build a Live Editor task. Live Editor
tasks represent a series of MATLAB commands that are automatically generated as users explore
parameters. Tasks are useful because they can help reduce development time, errors, and time spent
plotting.

You can create a Live Editor task programmatically by defining a subclass of the
matlab.task.LiveTask base class. Then, you programmatically add components to the task to
configure the user interface, and you write code to generate the MATLAB commands and output for
the task. For more information, see “Develop Live Editor Tasks”.

 Ways to Build Apps

1-3

See Also

Related Examples
• “Create and Run a Simple App Using App Designer” on page 3-2
• “Create and Run a Simple Programmatic App” on page 15-2
• “Display Graphics in App Designer” on page 3-15
• “Update figure-Based Apps to Use uifigure” on page 14-2
• “GUIDE Migration Strategies” on page 3-7

1 About Apps in MATLAB Software

1-4

How to Create a App with GUIDE

2

Files Generated by GUIDE

In this section...
“Code Files and FIG-Files” on page 2-2
“Code File Structure” on page 2-2
“Adding Callback Templates to an Existing Code File” on page 2-3
“About GUIDE-Generated Callbacks” on page 2-3

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Code Files and FIG-Files
By default, the first time you save or run your app, GUIDE save two files:

• A FIG-file, with extension .fig, that contains a complete description of the layout and each
component, such as push buttons, axes, panels, menus, and so on. The FIG-file is a binary file and
you cannot modify it except by changing the layout in GUIDE. FIG-files are specializations of MAT-
files. See “Create Custom Programs to Read MAT-Files” for more information.

• A code file, with extension .m, that initially contains initialization code and templates for some
callbacks that control behavior. You generally add callbacks you write for your components to this
file. As the callbacks are functions, the code file can never be a MATLAB script.

When you save your app for the first time, GUIDE automatically opens the code file in your default
editor.

The FIG-file and the code file must have the same name. These two files usually reside in the same
folder, and correspond to the tasks of laying out and programming the app. When you lay out the app
in the Layout Editor, your components and layout are stored in the FIG-file. When you program the
app, your code is stored in the corresponding code file.

Code File Structure
The code file that GUIDE generates is a function file. The name of the main function is the same as
the name of the code file. For example, if the name of the code file is mygui.m, then the name of the
main function is mygui. Each callback in the file is a local function of that main function.

When GUIDE generates a code file, it automatically includes templates for the most commonly used
callbacks for each component. The code file also contains initialization code, as well as an opening
function callback and an output function callback. It is your job to add code to the component
callbacks for your app to work as you want. You can also add code to the opening function callback
and the output function callback. The code file orders functions as shown in the following table.

2 How to Create a App with GUIDE

2-2

Section Description
Comments Displayed at the command line in response to the help command.
Initialization GUIDE initialization tasks. Do not edit this code.
Opening function Performs your initialization tasks before the user has access to the UI.
Output function Returns outputs to the MATLAB command line after the opening function

returns control and before control returns to the command line.
Component and figure
callbacks

Control the behavior of the window and of individual components.
MATLAB software calls a callback in response to a particular event for a
component or for the figure itself.

Utility/helper functions Perform miscellaneous functions not directly associated with an event for
the figure or a component.

Adding Callback Templates to an Existing Code File
When you save the app, GUIDE automatically adds templates for some callbacks to the code file. If
you want to add other callbacks to the file, you can easily do so.

Within GUIDE, you can add a local callback function template to the code in any of the following
ways. Select the component for which you want to add the callback, and then:

• Right-click the mouse button, and from the View callbacks submenu, select the desired callback.
• From View > View Callbacks, select the desired callback.
• Double-click a component to show its properties in the Property Inspector. In the Property

Inspector, click the pencil-and-paper icon next to the name of the callback you want to install
in the code file.

• For toolbar buttons, in the Toolbar Editor, click the View button next to Clicked Callback (for
Push Tool buttons) or On Callback, or Off Callback (for Toggle Tools).

When you perform any of these actions, GUIDE adds the callback template to the code file, saves it,
and opens it for editing at the callback you just added. If you select a callback that currently exists in
the code file, GUIDE adds no callback, but saves the file and opens it for editing at the callback you
select.

For more information, see “GUIDE-Generated Callback Functions and Property Values” on page 19-
4.

About GUIDE-Generated Callbacks
Callbacks created by GUIDE for components are similar to callbacks created programmatically, with
certain differences.

• GUIDE generates callbacks as function templates within the code file.

GUIDE names callbacks based on the callback type and the component Tag property. For example,
togglebutton1_Callback is such a default callback name. If you change a component Tag,
GUIDE renames all its callbacks in the code file to contain the new tag. You can change the name
of a callback, replace it with another function, or remove it entirely using the Property Inspector.

 Files Generated by GUIDE

2-3

• GUIDE provides three arguments on page 19-4 to callbacks, always named the same.
• You can append arguments to GUIDE-generated callbacks, but never alter or remove the ones that

GUIDE places there.
• You can rename a GUIDE-generated callback by editing its name or by changing the component

Tag.
• You can delete a callback from a component by clearing it from the Property Inspector; this action

does not remove anything from the code file.
• You can specify the same callback function for multiple components to enable them to share code.

After you delete a component in GUIDE, all callbacks it had remain in the code file. If you are sure
that no other component uses the callbacks, you can then remove the callback code manually. For
details, see “Renaming and Removing GUIDE-Generated Callbacks” on page 19-13.

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 19-2

2 How to Create a App with GUIDE

2-4

App Designer

5

App Designer Basics

• “Create and Run a Simple App Using App Designer” on page 3-2
• “GUIDE Migration Strategies” on page 3-7
• “Display Graphics in App Designer” on page 3-15
• “App Designer Preferences” on page 3-19

3

Create and Run a Simple App Using App Designer
App Designer provides a tutorial that guides you through the process of creating a simple app
containing a plot and a slider. The slider controls the amplitude of the plotted function. You can
create this app by running the tutorial, or you can follow the tutorial steps listed here.

Run the Tutorial
To run the tutorial in App Designer, open the App Designer Start Page and click Show examples in
the Apps section. Then, select Interactive Tutorial.

Tutorial Steps for Creating the App
App Designer has two views for creating an app: Design View and Code View. Use Design View to
create UI components and interactively lay out your app. Use Code View to program your app
behavior. You can switch between the two views using the toggle buttons in the upper right-corner of
App Designer.

To create the simple plotting app, open a new app in App Designer and follow these steps.

Step 1: Create an Axes Component

In Design View, create UI components and modify their appearance interactively. The Component
Library contains all components, containers, and tools that you can add to your app interactively. Add

3 App Designer Basics

3-2

a component by dragging it from the Component Library onto the app canvas. You can then change
the appearance of the component by setting properties in the Component Browser, or by editing
certain aspects of the component, such as size and label text, directly on the canvas.

In your plotting app, create an axes component to display plotted data. Drag an Axes component
from the Component Library onto the canvas.

Step 2: Create a Slider Component

Drag a Slider component from the Component Library onto the canvas. Place it below the axes
component.

Step 3: Update the Slider Label

Replace the slider label text. Double-click the label and replace the word Slider with Amplitude.

When you have finished laying out your app, the canvas in Design View should look like this:

For more information about laying out apps, see “Lay Out Apps in App Designer Design View” on
page 5-2.

 Create and Run a Simple App Using App Designer

3-3

Step 4: Navigate to Code View

Once you have laid out your app, write code to program the behavior of your app. Click the Code
View button above the canvas to edit your app code.

When you add components to your app in Design View, App Designer automatically generates code
that executes when you run the app. This code configures your app appearance to match what you
see on the canvas. This code is not editable and is displayed on a gray background. As part of this
generated code, App Designer creates some objects for you to use when programming your app
behavior.

• The app object — This object stores all of the data in your app, such as the UI components and
any data you specify using properties. All functions in your app require this object as the first
argument. This pattern enables you to have access to your components and properties from within
those functions.

• The component objects — Whenever you add a component in Design View, App Designer stores
the component as an object named using the form app.ComponentName. You can view and modify
the names of the components in your app using the Component Browser. To access and update
component properties from within your app code, use the pattern
app.ComponentName.Property.

Step 5: Add a Slider Callback Function

Program your app behavior using callback functions. A callback function is a function that executes
when the app user performs a specific interaction, such as adjusting the value of a slider.

In your plotting app, add a callback function that executes whenever the user adjusts the slider value.
Right-click app.AmplitudeSlider in the Component Browser. Then select Callbacks > Add
ValueChangedFcn callback in the context menu.

3 App Designer Basics

3-4

When you add a callback to a component, App Designer creates a callback function and places the
cursor in the body of that function. App Designer automatically passes the app object as the first
argument of the callback function to enable access components and their properties. For example, in
the AmplitudeSliderValueChanged function, App Designer automatically generates a line of code
to access the value of the slider.

For more information about programming app behavior using callback functions, see “Callbacks in
App Designer” on page 6-15.

Step 6: Plot Data

When you call a graphics function in App Designer, specify the target axes or parent object as an
argument to the function.

In your plotting app, update the plotted data in the axes whenever the app user changes the slider
value by specifying the name of the axes object in your app, app.UIAxes, as the first argument to
the plot function. Add this command to the second line of the AmplitudeSliderValueChanged
callback:

plot(app.UIAxes,value*peaks)

For more information about displaying graphics in an app, see “Display Graphics in App Designer” on
page 3-15.

Step 7: Update Axes Limits

To access and update component properties from within your app code, use the pattern
app.ComponentName.Property.

In your plotting app, change the limits of the y-axis by setting the YLim property of the app.UIAxes
object. Add this command to the third line of the AmplitudeSliderValueChanged callback:

app.UIAxes.YLim = [-1000 1000];

Step 8: Run the App

Click Run to save and run the app. Adjust the value of the slider to plot some data in the app.

After saving your changes, your app is available for running again in App Designer or by typing its
name (without the .mlapp extension) in the MATLAB Command Window. When you run the app from
the command prompt, the file must be in the current folder or on the MATLAB path.

 Create and Run a Simple App Using App Designer

3-5

See Also

Related Examples
• “Lay Out Apps in App Designer Design View” on page 5-2
• “Manage Code in App Designer Code View” on page 6-2
• “Callbacks in App Designer” on page 6-15
• “Display Graphics in App Designer” on page 3-15
• “Share Data Within App Designer Apps” on page 6-25

3 App Designer Basics

3-6

GUIDE Migration Strategies
In R2019b, MathWorks® announced that GUIDE, the original drag-and-drop environment for building
apps in MATLAB, will be removed in a future release. After GUIDE is removed, existing GUIDE apps
(GUIs) will continue to run in MATLAB, and app program files will still be editable if you need to
change the behavior of an app.

To continue editing the layout of an existing GUIDE app and help maintain its compatibility with
future MATLAB releases, you must use one of the suggested migration strategies listed in this table.

App Development Needs Migration Strategy How to Migrate
Occasional editing Export your app to a single

MATLAB file to manage your
app layout and code using
MATLAB functions.

Open the app in GUIDE and
select File > Export to
MATLAB-file. In the GUIDE
Removal Options dialog, click
Export.

Ongoing development Migrate your app to App
Designer.

Open the app in GUIDE and
select File > Migrate to App
Designer. In the GUIDE
Removal Options dialog, click
Migrate.

Export GUIDE App to MATLAB File
Exporting a GUIDE app converts it into a programmatic app by recreating the GUIDE FIG and
program files together in a single MATLAB program file.

Use this option if you plan to:

• Make minor changes to the layout or behavior of your app.
• Develop your app programmatically, not interactively.

To export your app, open it in GUIDE and select File > Export to MATLAB-file, or right-click the
FIG file in the MATLAB Current Folder browser and select Export to MATLAB-file. This brings up
the GUIDE Removal Options dialog. Verify that the correct FIG file is selected and then click Export.
MATLAB creates a program file with _export appended to the file name. The new file contains your
original callback code plus auto-generated functions that handle the creation and layout of the app.
An example of these added functions is shown here.

 GUIDE Migration Strategies

3-7

Migrate GUIDE App to App Designer
Migrating your GUIDE app to App Designer allows you to continue developing the layout of your app
interactively. It also allows you to take advantage of features like an enhanced UI component set and
auto-reflow options to make your app responsive to changes in screen size. And it gives you the
ability to create and share your app as a web app (requires MATLAB Compiler).

The GUIDE to App Designer Migration Tool for MATLAB was first released in R2018a to ease the
conversion process. It is available through the Add-On Explorer in the MATLAB desktop or through
File Exchange on MATLAB Central™.

Starting in R2020a, the migration tool has significant improvements that drastically reduce the time,
and the number of manual code updates, required to get your app running in App Designer. For
details about these enhancements, see “Callback Code” on page 3-9.

Use this option for GUIDE apps that require significant or ongoing feature development.

There are several ways to migrate your app, depending on which environment you begin in.

• Open the GUIDE Removal Options dialog by opening your app in GUIDE and selecting File >
Migrate to App Designer, or right-clicking the FIG file in the MATLAB Current Folder browser
and selecting Migrate to App Designer.

• If you do not already have the GUIDE to App Designer Migration Tool installed, click Install
Support Package. This opens the Add-On Explorer, where you can install the migration tool.
Once you have installed the tool, reopen the GUIDE Removal Options dialog.

• Once you have installed the GUIDE to App Designer Migration Tool, choose the correct FIG file
and then click Migrate. The app migrates and automatically opens in App Designer.

• From App Designer, open any app and go to the Designer tab. In the File section, click Open >
Open GUIDE to App Designer Migration Tool.

3 App Designer Basics

3-8

https://www.mathworks.com/matlabcentral/fileexchange/66087-guide-to-app-designer-migration-tool-for-matlab

Features of the Migration Tool

The migration tool helps you convert your apps by reading in a GUIDE FIG file and automatically
generating the App Designer equivalent components and layout in an MLAPP file. Your GUIDE
callback code and other user-defined functions are copied into the MLAPP file. This semi-automated
code conversion also creates a migration report that suggests actions for any manual code updates
that are needed. Some features of the tool are described in this table.

Migration
Tool
Features

Description

File
Conversion

Read in a GUIDE FIG file and associated code and then generate an App Designer
MLAPP file. The App Designer file name takes the form guideFileName_App.mlapp.

Component
s and App
Layout

Convert components and property configurations to App Designer equivalents, and
preserve the layout of the app.

Callback
Code

Retain a copy of the GUIDE callback code and user-defined functions in the MLAPP file.

Tutorial Step through the changes made to your migrated app.
Migration
Report

Summarize the actions successfully completed by the migration tool. List any
limitations or unsupported functionality, specific to your app, with suggested actions if
available.

Callback Code

In order to make your GUIDE-style callback code compatible with the App Designer UI components in
your app, the migration tool uses a function called convertToGUIDECallbackArguments. This
function converts App Designer callback arguments into the GUIDE-style callback arguments that
your code requires. The convertToGUIDECallbackArguments function is added to the beginning
of each migrated callback function. It takes the App Designer callback arguments app and event and
returns the GUIDE-style callback arguments hObject, eventdata, and handles. For example:

 GUIDE Migration Strategies

3-9

Each of the GUIDE-style callback arguments is used for a different purpose:

• hObject is the handle of the object whose callback is executing. For components from your
GUIDE app that were UIControl or ButtonGroup objects, hObject is a handle to a
UIControlPropertiesConverter or ButtonGroupPropertiesConverter object. These
objects are created to make your GUIDE-style code work in your App Designer callback functions.

• eventdata is usually empty, but can be a structure containing specific information about the
callback event.

• handles is a structure that contains the migrated child components of the UI figure that have a
'Tag' property value set. Child components that were UIControl objects in your GUIDE app are
UIControlPropertiesConverter objects in the migrated app. Similarly, child ButtonGroup
objects are ButtonGroupPropertiesConverter objects in the migrated app.

The UIControlPropertiesConverter and ButtonGroupPropertiesConverter objects act like
adapters between the GUIDE-style code and the App Designer components and callbacks. A
UIControlPropertiesConverter object is created for each component in your GUIDE app that
was a UIControl object. These converter objects are associated with an App Designer UI component
in your migrated app. The converter object has the same properties and values as the original
UIControl from your GUIDE app, but it applies them to its associated App Designer UI component.

Similarly, for ButtonGroup objects from GUIDE, a ButtonGroupPropertiesConverter object is
created in App Designer. This object makes it possible to set the SelectedObject property to a
UIControlPropertiesConverter object so that button group SelectionChangedFcn callback
logic will function.

Special Considerations

There are some circumstances that require you to take extra steps before or after you migrate your
app. This table lists common scenarios and coding patterns that require extra steps or manual code
updates. This is not intended to be a comprehensive list.

GUIDE App Feature Description Suggested Actions
Multiwindow apps (that is, two
or more apps that share data)

Multiwindow apps require each
app to be migrated separately.
Migrated app file names are
appended with _App. Calls to
these apps from other apps
must be updated.

Migrate each app separately. In
the calling app, update the
name of the app that is being
called to the new file name.

3 App Designer Basics

3-10

GUIDE App Feature Description Suggested Actions
Radio buttons and radio button
callbacks

The migration tool does not
migrate radio buttons that are
not parented to a radio button
group, or callback functions for
individual radio buttons.

Create a button group in App
Designer and add radio buttons
to it. To execute behavior when
radio button selection is
changed, create a
SelectionChangedFcn
callback function for the button
group. For more information,
see uiradiobutton and
ButtonGroup Properties.

uistack Calling this function in App
Designer is not supported.

Determine if this functionality is
critical to your app before
migrating. There is no
workaround in App Designer.

findobj, findall, and gcbo Using findobj, findall, or
gcbo to reference components
and set properties can error.
UIControl objects are
migrated to the equivalent App
Designer UI component. To
access and set properties on
these migrated components, you
must set it on the
UIControlPropertiesConve
rter objects. Or, you can
update your code to use its
associated App Designer
component, properties, and
values.

Reference components using
the handles structure instead,
or update your code to use the
associated App Designer
component, properties, and
values.

nargin and nargchk Helper functions are migrated
to app methods and have app as
an additional input argument.
This can cause incorrect
nargin or nargchk logic.

Increment check values by 1.

 GUIDE Migration Strategies

3-11

GUIDE App Feature Description Suggested Actions
OutputFcn(varargout) and
Figure output

There is no equivalent
functionality in App Designer.

When you instantiate a migrated
App Designer app, the output is
always the app object, not the
Figure object.

If your OutputFcn function
includes initialization code that
is critical to your app, then add
it to the end of the OpeningFcn
instead.

If your OutputFcn function
specifies output to be assigned
to the workspace when you
instantiate the app, such as the
Figure object, then you need to
create a function that
instantiates the app. For
example:

function out = MyGUIDEApp(varargin)
 app = MyMigratedApp(varargin{:});
 out = app.UIFigure;
end

If your GUIDE app integrates third-party components using functions like actxcontrol, see
Recommendations for MATLAB Apps Using Java and ActiveX.

Aids for Adding New Features or Fully Adopting App Designer Code Style

App Designer and GUIDE have different code structures, callback syntaxes, and techniques for
accessing UI components and sharing data. Understanding these differences is useful if you plan to
add new App Designer features to your migrated app or want to update it to use App Designer code
style and conventions. This table summarizes some of these differences.

Difference GUIDE App Designer More
Information

Using Figures
and Graphics

GUIDE calls the figure
function to create the app
window.

GUIDE calls the axes function
to create axes for displaying
plots.

All MATLAB graphics functions
are supported. There is no need
to specify the target axes.

App Designer calls the
uifigure function to create
the app window.

App Designer calls the uiaxes
function to create axes for
displaying plots.

Most MATLAB graphics
functions are supported.

“Display
Graphics in App
Designer” on
page 3-15

Using
Components

GUIDE creates most
components with the
uicontrol function. Fewer
components are available.

App Designer creates each UI
component with its own
dedicated function. More
components are available,
including Tree, Gauge,
TabGroup, and DatePicker.

“App Building
Components”
on page 4-2
“Update
UIControl
Objects and
Callbacks” on
page 14-11

3 App Designer Basics

3-12

https://www.mathworks.com/products/matlab/app-designer/java-swing-alternatives.html

Difference GUIDE App Designer More
Information

Accessing
Component
Properties

GUIDE uses set and get to
access component properties,
and uses handles to specify a
component.

For example,
name =
get(handles.Fig,'Name')

App Designer supports set and
get, but encourages the use of
dot notation to access
component properties, and uses
app to specify a component.

For example,
name = app.UIFigure.Name

“Callbacks in
App Designer”
on page 6-15

Managing App
Code

The code is defined as a main
function that can call local
functions. All code is editable.

The code is defined as a
MATLAB class. Only callbacks,
helper functions, and custom
properties are editable.

“Manage Code
in App Designer
Code View” on
page 6-2

Writing
Callbacks

Required callback input
arguments are handles,
hObject, and eventdata.

For example,
myCallback(hObject,evend
ata,handles)

Required callback input
arguments are app and event.

For example,
myCallback(app,event)

“Callbacks in
App Designer”
on page 6-15

Sharing Data To store and share data between
callbacks and functions, use the
UserData property, the
handles structure, or the
guidata, setappdata, or
getappdata function.

For example,
handles.currSelection =
selection;
guidata(hObject,handles)
;

To store and share data between
callbacks and functions, use
custom properties to create
variables.
For example,
app.currSelection =
selection

“Share Data
Within App
Designer Apps”
on page 6-25

If you want to update the callback code in your migrated app to use App Designer code style and
conventions, follow these steps:

1 In your callback functions, update references to the handles structure to instead use the app
object. The handles structure gives access to converter objects that represent UIControl
objects in your GUIDE app, whereas the app object gives access to the UI components in the App
Designer app.

For example, a GUIDE-style callback sets the BackgroundColor of a push button style
UIControl object using this code:

handles.pushbutton1.BackgroundColor = 'red';

Update this code to set the button UI component background color directly:

app.pushbutton1.BackgroundColor = 'red';
2 Update the properties that your callback code sets. In general, UIControl objects and their

equivalent UI component objects have many of the same properties. However, there are some

 GUIDE Migration Strategies

3-13

differences in the property names or the types of values that the properties accept. To see a
comparison between UIControl and UI component objects and properties, and to learn how to
update your code to use UI components, see “Update UIControl Objects and Callbacks” on page
14-11.

3 Once a callback function does not use the hObject, eventdata, or handles arguments, delete
the line of code added by the Migration Tool that creates those arguments:
[hObject,eventdata,handles] = convertToGUIDECallbackArguments(app,event);

If your app creates dialog boxes using functions such as errordlg or warndlg, you can also update
your code to take advantage of modern dialog boxes created specifically for app building, such as
uialert and uiconfirm. For more information, see “Update Dialog Boxes” on page 14-18.

See Also

Related Examples
• “Create and Run a Simple App Using App Designer” on page 3-2
• “Display Graphics in App Designer” on page 3-15
• “Ways to Build Apps” on page 1-2

3 App Designer Basics

3-14

Display Graphics in App Designer

In this section...
“App Designer Graphics Overview” on page 3-15
“Display Graphics on Existing Axes” on page 3-15
“Display Graphics in Container” on page 3-16
“Create Axes Programmatically” on page 3-16
“Use Functions with No Target Argument” on page 3-17
“Use Functions That Don't Support Automatic Resizing” on page 3-17
“Unsupported Functionality” on page 3-18

App Designer Graphics Overview
Many of the graphics functions in MATLAB (and MATLAB toolboxes) have an argument for specifying
the target axes or parent object. This argument is optional in most contexts, but when you call these
functions in App Designer, you must specify this argument. The reason is that, in most contexts,
MATLAB defaults to using the gcf or gca functions to get the target object for an operation. But
these functions depend on the HandleVisibility property of the parent figure being 'on', and the
HandleVisibility property of App Designer figures is set to 'off' by default. This means that
gcf and gca do not work as normal. As a result, omitting the argument for a target axes or parent
object can produce unexpected results.

Depending on the graphics function you call, you might need to specify:

• A UIAxes component on the canvas
• A parent container in your app
• An axes component that you create programmatically in your app code

There are a number of ways to specify the target component for a graphics function. Some examples
of the most common syntaxes are given below. To determine the correct target and syntax in your
context, see the documentation for the specific graphics function you are using.

Display Graphics on Existing Axes
The most common way to display graphics in App Designer is to specify a UIAxes object on the App
Designer canvas as the graphics function target. When you drag an axes component from the
Component Library onto the canvas, this creates a UIAxes object in your app. The default name for
an App Designer axes object is app.UIAxes. To determine or change the name of a specific axes on
your canvas, select the axes component. Its name is listed and can be edited in the Component
Browser

Specify Axes as First Argument

Many graphics functions have an optional first input argument to specify the target axes object. For
example, both the plot function and the hold function take a target axes object in this way. To plot
two lines on a set of axes on the canvas, specify the name of the axes object as the first argument to
each function you call.

 Display Graphics in App Designer

3-15

plot(app.UIAxes,[1 2 3 4],'-r');
hold(app.UIAxes);
plot(app.UIAxes,[10 9 4 7],'--b');

Specify Axes as Name-Value Argument

Some graphics functions require the target axes object to be specified as a name-value argument. For
example, when you call the imshow and triplot functions, specify the axes object to display on
using the 'Parent' name-value argument. This code displays an image on an existing set of axes on
your canvas:

imshow('peppers.png','Parent',app.UIAxes);

Display Graphics in Container
Some graphics functions display in a container component, such as a figure, panel, or grid layout,
instead of an axes object. For example, the heatmap function has an optional first argument for
specifying the container that the chart will display in.

Every App Designer app has a figure object, by default named app.UIFigure, that is a container for
the components that make up the main app window. Specify app.UIFigure as the parent container
argument to display graphics in the main app window. For example, to create a heat map in your app,
use this syntax:

h = heatmap(app.UIFigure,rand(10));

To further organize and compartmentalize graphics that take a parent container input argument,
drag a container component such as a panel, tab, or grid layout from the Component Library onto
the canvas. Determine the name of the component by selecting it and viewing its name in the
Component Browser. You can then specify this container as the parent when you call the graphics
function.

Other commonly used graphics functions that take a parent container as input include annotation,
geobubble, parallelplot, scatterhistogram, stackedplot, and wordcloud.

Create Axes Programmatically
Some graphics functions plot data on specialized axes. For example, functions that plot polar data
must do so on a PolarAxes object. Unlike UIAxes objects, which you can add to your app from the
Component Library, you must add specialized axes to your app programmatically in your code. To
create an axes object programmatically, create a StartupFcn callback for your app. Within it, call
the appropriate graphics function and specify a parent container in your app as the target.

Plot on Polar Axes

Functions such as polarplot, polarhistogram, and polarscatter take a polar axes object as a
target. Create a polar axes programmatically by calling the polaraxes function. For example, to plot
a polar equation in a panel, first drag a panel component from the Component Library onto your
canvas. In the code for your app, create the polar axes object by calling the polaraxes function and
specifying the panel as the parent container. Then, plot your equation with the polarplot function,
specifying the polar axes as the target axes.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);

3 App Designer Basics

3-16

pax = polaraxes(app.Panel);
polarplot(pax,theta,rho)

Plot on Geographic Axes

Functions such as geoplot, geoscatter, and geodensityplot take a geographic axes object as a
target. Create a geographic axes programmatically by calling the geoaxes function. For example, to
plot geographic data in a panel, use the following code:

latSeattle = 47 + 37/60;
lonSeattle = -(122 + 20/60);
gx = geoaxes(app.Panel);
geoplot(gx,latSeattle,lonSeattle)

Create Tiled Chart Layout

To tile multiple charts using the tiledlayout function, create a tiled chart layout in a panel and
programmatically create axes in it using the nexttile function. Return the axes object from the
nexttile function and use it to specify the axes for your charts or plots.

t = tiledlayout(app.Panel,2,1);
[X,Y,Z] = peaks(20)

% Tile 1
ax1 = nexttile(t);
surf(ax1,X,Y,Z)

% Tile 2
ax2 = nexttile(t);
contour(ax2,X,Y,Z)

Use Functions with No Target Argument
Some graphics functions, such as ginput and gtext, do not have an argument for specifying a
target. As a result, you must set the HandleVisibility property of the App Designer figure to
'callback' or 'on' before calling these functions. After you call these functions, you can set the
HandleVisibility property back to 'off'. For example, this code shows how to define a callback
that allows you to identify the coordinates of two points using the ginput function.

function pushButtonCallback(app,event)
 app.UIFigure.HandleVisibility = 'callback';
 ginput(2)
 app.UIFigure.HandleVisibility = 'off';
end

Use Functions That Don't Support Automatic Resizing
App Designer figures are resizable by default. This means that when you run an app and resize the
figure window, components in the figure are automatically resized and repositioned to fit. However,
some graphics functions do not support automatic resizing. To use these functions in App Designer,
create a panel in which to display the output of the function and set the AutoResizeChildren
property of the panel to 'off'. You can set this property in the Panel tab of the Component
Browser or in your code.

For example, the subplot function does not support automatic resizing. To use this function in your
app:

 Display Graphics in App Designer

3-17

1 Drag a panel component from the Component Library onto your canvas.
2 Set the AutoResizeChildren property of the panel to 'off'.
3 Specify the panel as the parent container using the 'Parent' name-value argument when you

call subplot. Also, specify an output argument to store the axes.
4 Call the plotting function with the axes as the first input argument.

app.Panel.AutoResizeChildren = 'off';
ax1 = subplot(1,2,1,'Parent',app.Panel);
ax2 = subplot(1,2,2,'Parent',app.Panel);
plot(ax1,[1 2 3 4])
plot(ax2,[10 9 4 7])

Other commonly used functions that do not support automatic resizing include pareto and
plotmatrix.

For more information about managing resize behavior, see “Alternatives to Default Auto-Resize
Behaviors” on page 5-11.

Unsupported Functionality
As of R2022a, some graphics functionality is not supported in App Designer. This table lists the
unsupported functionality that is most relevant to app building workflows.

Category Not Supported
Retrieving and
Saving Data

These functions are not supported: hgexport, hgload, hgsave, save, load,
savefig, openfig, and saveas, and print.

Instead of the saveas or print functions, use the exportapp function to save
the content of an app window. To save plots in an app, use the
exportgraphics or copygraphics functions.

Figures created programmatically with uifigure do support the save, load,
savefig, and openfig functions.

Web Apps If you are using App Designer to create a deployed web app (requires MATLAB
Compiler), additional graphics limitations apply.

For more information, see “Web App Limitations and Unsupported
Functionality” (MATLAB Compiler).

See Also
UI Figure | UIAxes

More About
• “Create Polar Axes Programmatically in an App” on page 7-7
• “App Building Components” on page 4-2
• “Add UI Components to App Designer Programmatically” on page 4-20
• “Manage Resizable Apps in App Designer” on page 5-11

3 App Designer Basics

3-18

App Designer Preferences
You can set App Designer preferences in the MATLAB Preferences dialog box. To open the dialog box,
click Preferences in the MATLAB Toolstrip. Then, select App Designer in the left pane.

This table describes each option in the right pane.

Option Description
Show grid with interval When selected, App Designer overlays a grid onto

the canvas as an alignment aide. You can change
the grid spacing to a specific number of pixels.
The default spacing is 10.

Snap to grid When selected, the upper left corner of a
component always snaps to the intersection of
two grid lines whenever you resize or move the
component on the canvas.

Show alignment hints When selected, App Designer displays alignment
hints as you resize or move a component on the
canvas.

Show resizing hints When selected, App Designer displays the size of
a component as you resize it on the canvas.

 App Designer Preferences

3-19

Option Description
Font size To change the font size that displays in App

Designer Code View, click the link and modify
the Desktop code font size. The font size can
range from 8–48. The default font size is 10.

Enable app coding alerts When selected, App Designer flags coding
problems in the editor as you write code.

Read-only background You can change the background color of the
uneditable code sections in App Designer Code
View. To change the background color, clear the
Use system colors check box in the MATLAB
Colors preferences. Then, select a new color from
the color drop-down in the App Designer
preferences. The default background color is
gray.

Include component labels in Component
Browser

When selected, labels included with components
(such as edit fields) appear as separate items in
the Component Browser. When this item is not
selected, those labels do not appear in the
Component Browser.

Number of entries (most recently used file
list)

This number specifies how many of the most
recently accessed apps appear under the Recent
Files section of the Open menu in the Designer
tab.

Save changes upon clicking away from an
app

When selected, App Designer automatically saves
changes to an app when you click away from it to
switch between apps or to bring another window
into focus. If an app has not already been saved
at least once, autosave has no effect.

Show file extension in window title When selected, App Designer displays the file
extension of the active app in the App Designer
window title.

Show file path in window title When selected, App Designer displays the full
path to the active app in the App Designer
window title. When this item is not selected, App
Designer displays only the app file name.

To customize the App Designer canvas and Component Browser settings programmatically, use
matlab.appdesigner Settings.

See Also

Related Examples
• “Lay Out Apps in App Designer Design View” on page 5-2
• “Manage Code in App Designer Code View” on page 6-2

3 App Designer Basics

3-20

Component Choices and Customizations

• “App Building Components” on page 4-2
• “Table Array Data Types in App Designer Apps” on page 4-15
• “Add UI Components to App Designer Programmatically” on page 4-20
• “Create HTML File That Can Trigger or Respond to Data Changes” on page 4-23

4

App Building Components
App Designer and UI figures support a large set of components for designing modern, full-featured
applications. The tables below list the components that are available.

• Common Components — Include components that respond to interactions, such as buttons,
sliders, drop-down lists, and trees.

• Axes — Include axes to create plots for data visualization and exploration.
• Containers and Figure Tools — Include panels and tabs for grouping components, as well as menu

bars.
• Instrumentation Components — Include gauges and lamps for visualizing status, as well as knobs

and switches for selecting input parameters.
• Extensible Components — Include custom UI components that you author. Interface with third-

party libraries to display content like widgets or data visualizations.
• Toolbox Components — Include toolbox authored UI components. Requires additional toolbox

license and installation.

All components are available programmatically. Most UI components are also available in the App
Designer Component Library for you to drag and drop onto the canvas. To add components to an
App Designer app that are not available in the Component Library, or that you want to add
dynamically to the running app, see “Add UI Components to App Designer Programmatically” on page
4-20.

When calling graphics functions in App Designer, the workflow is slightly different than you typically
use at the MATLAB command line. For more information about how to call graphics functions in App
Designer, see “Display Graphics in App Designer” on page 3-15.

Common Components
Component
Information

Example

Button

CheckBox

4 Component Choices and Customizations

4-2

Component
Information

Example

CheckBoxTree
Properties
TreeNode

DatePicker Properties

DropDown

NumericEditField

EditField

 App Building Components

4-3

Component
Information

Example

Hyperlink Properties

Image Properties

Label

ListBox

ButtonGroup
RadioButton

Slider

Spinner

4 Component Choices and Customizations

4-4

Component
Information

Example

StateButton

Table

TextArea

ButtonGroup
ToggleButton

Tree
TreeNode

 App Building Components

4-5

Axes
Axes Information Example
UIAxes

Axes Properties
This object can be
added
programmatically
only.

GeographicAxes
Properties
This object can be
added
programmatically
only.

4 Component Choices and Customizations

4-6

Axes Information Example
PolarAxes Properties
This object can be
added
programmatically
only.

Containers and Figure Tools
Container
Information

Example

GridLayout Properties

Panel

 App Building Components

4-7

Container
Information

Example

TabGroup
Tab

Menu

ContextMenu
Properties

Toolbar Properties
PushTool Properties
ToggleTool Properties

4 Component Choices and Customizations

4-8

Dialogs and Notifications
Dialog Information Example
uialert
This object can be
added
programmatically
only.

uiconfirm
This object can be
added
programmatically
only.

uiprogressdlg
This object can be
added
programmatically
only.

 App Building Components

4-9

Dialog Information Example
uisetcolor
This object can be
added
programmatically
only.

uigetfile
This object can be
added
programmatically
only.

uiputfile
This object can be
added
programmatically
only.

4 Component Choices and Customizations

4-10

Dialog Information Example
uigetdir
This object can be
added
programmatically
only.

uiopen
This object can be
added
programmatically
only.

uisave
This object can be
added
programmatically
only.

 App Building Components

4-11

Instrumentation
Component
Information

Example

Gauge

NinetyDegreeGauge

LinearGauge

SemicircularGauge

Knob

DiscreteKnob

4 Component Choices and Customizations

4-12

Component
Information

Example

Lamp

Switch

RockerSwitch

ToggleSwitch

Extensible Components
Component
Information

Example

matlab.ui.compone
ntcontainer.Compo
nentContainer
Class

matlab.graphics.c
hartcontainer.Cha
rtContainer Class

 App Building Components

4-13

Component
Information

Example

HTML Properties

Toolbox Components
Apps created in App Designer or with the uifigure function support Aerospace Toolbox
components. For more information, see “Flight Instruments” (Aerospace Toolbox). To use toolbox
components, a valid license and installation of the associated toolbox is required.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Display Graphics in App Designer” on page 3-15
• “Create and Run a Simple App Using App Designer” on page 3-2
• “Add UI Components to App Designer Programmatically” on page 4-20
• “Create and Run a Simple Programmatic App” on page 15-2

4 Component Choices and Customizations

4-14

Table Array Data Types in App Designer Apps
Table arrays are useful for storing tabular data as MATLAB variables. For example, you can call the
readtable function to create a table array from a spreadsheet.

Table UI components, by contrast, are user interface components that display tabular data in apps.
Starting in R2018a, the types of data you can display in a Table UI component include table arrays.
Only App Designer apps and figures created with the uifigure function support table arrays.

When you display table array data in apps, you can take advantage of the interactive features for
certain data types. And unlike other types of arrays that Table UI components support, table array
data does not display according to the ColumnFormat property of the Table UI component.

Logical Data
In a Table UI component, logical values display as check boxes. true values are checked, whereas
false values are unchecked. When the ColumnEditable property of the Table UI component is
true, the user can select and clear the check boxes in the app.

fig = uifigure;
tdata = table([true; true; false]);
uit = uitable(fig,'Data',tdata);
uit.Position(3) = 130;
uit.RowName = 'numbered';

Categorical Data
categorical values can appear as drop-down lists or as text. The categories appear in drop-down
lists when the ColumnEditable property of the Table UI component is true. Otherwise, the
categories display as text without a drop-down list.

fig = uifigure;
cnames = categorical({'Blue';'Red'},{'Blue','Red'});
w = [400; 700];
tdata = table(cnames,w,'VariableNames',{'Color','Wavelength'});
uit = uitable(fig,'Data',tdata,'ColumnEditable',true);

 Table Array Data Types in App Designer Apps

4-15

If the categorical array is not protected, users can add new categories in the running app by
typing in the cell.

Datetime Data
datetime values display according to the Format property of the corresponding table variable (a
datetime array).

fig = uifigure;
dates = datetime([2016,01,17; 2017,01,20],'Format','MM/dd/uuuu');
m = [10; 9];
tdata = table(dates,m,'VariableNames',{'Date','Measurement'});
uit = uitable(fig,'Data',tdata);

To change the format, use dot notation to set the Format property of the table variable. Then, replace
the data in the Table UI component.

tdata.Date.Format = 'dd/MM/uuuu';
uit.Data = tdata;

When the ColumnEditable property of the Table UI component is true, users can change date
values in the app. When the column is editable, the app expects input values that conform to the
Format property of the datetime array. If the user enters an invalid date, the value displayed in the
table is NaT.

Duration Data
duration values display according to the Format property of the corresponding table variable (a
duration array).

fig = uifigure;
mtime = duration([0;0],[1;1],[20;30]);
dist = [10.51; 10.92];
tdata = table(mtime,dist,'VariableNames',{'Time','Distance'});
uit = uitable(fig,'Data',tdata);

4 Component Choices and Customizations

4-16

To change the format, use dot notation to set the Format property of the table variable.

tdata.Time.Format = 's';
uit.Data = tdata;

Cells containing duration values are not editable in the running app, even when ColumnEditable
of the Table UI component is true.

Nonscalar Data
Nonscalar values display in the app the same way as they display in the Command Window. For
example, this table array contains 3-D arrays and struct arrays.

fig = uifigure;
arr = {rand(3,3,3); rand(3,3,3)};
s = {struct; struct};
tdata = table(arr,s,'VariableNames',{'Array','Structure'});
uit = uitable(fig,'Data',tdata);

A multicolumn table array variable displays as a combined column in the app, just as it does in the
Command Window. For example, the RGB variable in this table array is a 3-by-3 array.

n = [1;2;3];
rgbs = [128 122 16; 0 66 155; 255 0 0];
tdata = table(n,rgbs,'VariableNames',{'ROI','RGB'})

tdata =

 3×2 table

 ROI RGB
 ___ _________________

 1 128 122 16
 2 0 66 155
 3 255 0 0

The Table UI component provides a similar presentation. Selecting an item in the RGB column
selects all the subcolumns in that row. The values in the subcolumns are not editable in the running
app, even when ColumnEditable property of the Table UI component is true.

fig = uifigure;
uit = uitable(fig,'Data',tdata);

 Table Array Data Types in App Designer Apps

4-17

Missing Data Values
Missing values display as indicators according to the data type:

• Missing strings display as <missing>.
• Undefined categorical values display as <undefined>.
• Invalid or undefined numbers or duration values display as NaN.
• Invalid or undefined datetime values display as NaT.

If the ColumnEditable property of the Table UI component is true, then the user can correct the
values in the running app.

fig = uifigure;
sz = categorical([1; 3; 4; 2],1:3,{'Large','Medium','Small'});
num = [NaN; 10; 12; 15];
tdata = table(sz,num,'VariableNames',{'Size','Number'});
uit = uitable(fig,'Data',tdata,'ColumnEditable',true);

Example: App that Displays a Table Array
This app shows how to display a Table UI component in an app that uses table array data. The table
array contains numeric, logical, categorical, and multicolumn variables.

The StartupFcn callback loads a spreadsheet into a table array. Then a subset of the data displays
and is plotted in the app. One plot displays the original table data. The other plot initially shows the
same table data, and then updates when the user edits a value or sorts a column in the Table UI
component.

4 Component Choices and Customizations

4-18

See Also
Table (App Designer) | uitable

Related Examples
• “Callbacks in App Designer” on page 6-15
• “Reuse Code Using Helper Functions” on page 6-22

 Table Array Data Types in App Designer Apps

4-19

Add UI Components to App Designer Programmatically
Most UI components are available in the App Designer Component Library for you to drag and drop
onto the canvas. Occasionally, you might need to add components programmatically in Code View.
Here are a few common situations:

• Creating components that are not available in the Component Library. For example, an app that
displays a dialog box must call the appropriate function to display the dialog box.

• Creating components dynamically according to run-time conditions.

When you add UI components programmatically, you must call the appropriate function to create the
component, assign a callback to the component, and then write the callback as a helper function.

Create the Component and Assign the Callback
Call the function that creates the component from within an existing callback (for a list of UI
component functions, see “Develop uifigure-Based Apps”). The StartupFcn callback is a good place
to create components because that callback runs when the app starts up. In other cases, you might
create components within a different callback function. For example, if you want to display a dialog
box when the user presses a button, call the dialog box function from within the button's callback
function.

When you call a function to create a component, specify the figure or one of its child containers as
the parent object. For example, this command creates a button and specifies the figure as the parent
object. In this case, the figure has the default name that App Designer assigns (app.UIFigure).

b = uibutton(app.UIFigure);

Next, specify the component's callback property as a function handle of the form
@app.callbackname. For example, this command sets the ButtonPushedFcn property of button b
to a callback function named mybuttonpress.

b.ButtonPushedFcn = @app.mybuttonpress;

Write the Callback
Write the callback function for the component as a private helper function. The function must have
app, src, and event as the first three arguments. Here is an example of a callback written as a
private helper function.

methods (Access = private)

 function mybuttonpress(app,src,event)
 disp('Have a nice day!');
 end

end

To write a callback that accepts additional input arguments, specify the additional arguments after
the first three. For example, this callback accepts two additional inputs, x and y:

methods (Access = private)

 function addxy(app,src,event,x,y)

4 Component Choices and Customizations

4-20

 disp(x + y);
 end

end

To assign this callback to a component, specify the component's callback property as cell array. The
first element in the cell array must be the function handle. Subsequent elements must be the
additional input values. For example:

b.ButtonPushedFcn = {@app.addxy,10,20};

Example: Confirmation Dialog Box with a Close Function
This app shows how to display a confirmation dialog box that executes a callback when the dialog box
closes.

When the user clicks the window's close button (X), a dialog box displays to confirm that the user
wants to close the app. When the user dismisses the dialog box, the CloseFcn callback executes.

Example: App that Populates Tree Nodes Based on a Data File
This app shows how to dynamically add tree nodes at run time. The three hospital nodes exist in the
tree before the app runs. However at run time, the app adds several child nodes under each hospital
name. The number of child nodes and the labels on the child nodes are determined by the contents of
the patients.xls spreadsheet.

 Add UI Components to App Designer Programmatically

4-21

When the user clicks a patient name in the tree, the Patient Information panel displays data such
as age, gender, and health status. The app stores changes to the data in a table array.

See Also

More About
• “Callbacks in App Designer” on page 6-15
• “Reuse Code Using Helper Functions” on page 6-22

4 Component Choices and Customizations

4-22

Create HTML File That Can Trigger or Respond to Data Changes
You can include third-party visualizations or widgets in your app by creating an HTML UI component
in it that displays HTML, JavaScript, or CSS content from an HTML file. When you add an HTML UI
component to your app, to enable the component to set data or respond to data changes between
MATLAB and JavaScript, include a setup function in your HTML file. Within the setup function you
can connect the HTML content to the HTML UI component in MATLAB.

Include Setup Function in Your HTML File
To connect the MATLAB HTML UI component in your app to the content in your HTML file, create a
setup function that defines and initializes a local htmlComponent JavaScript object. The HTML UI
component in MATLAB and the htmlComponent JavaScript object have Data properties that
synchronize with each other. The setup function is required if you want to set data from either
MATLAB or JavaScript and respond to changes in data that occur on the opposite side.

The setup function is called when one of these events happens:

• The HTML UI component is created in the figure and the content has fully loaded.
• The HTMLSource property changes to a new value.

The setup function is called only if it is defined. The htmlComponent JavaScript object is accessible
only from within the setup function.

The htmlComponent JavaScript object also has addEventListener and removeEventListener
properties. Use these properties to listen for DataChanged events from MATLAB. The event data
from DataChanged events provides the source htmlComponent JavaScript object with the old and
new data. For more information about the addEventListener and removeEventListener
methods, see EventTarget.addEventListener() and EventTarget.removeEventListener() on Mozilla®

MDN web docs.

Sample HTML File
This example shows an HTML file with the required setup function for enabling MATLAB and
JavaScript to respond to data changes from one another.

Within the setup function, once the htmlComponent JavaScript object has been initialized, you
define the behavior of the component. For example:

• Get the initial value of the Data property from the HTML UI component in MATLAB.
• Initialize your HTML or JavaScript by updating DOM elements or JavaScript widgets.
• Listen for "DataChanged" events in MATLAB and code a JavaScript response. For example, you

can update your HTML or JavaScript with the new data that triggered the event.
• Create a function that sets the Data property of the htmlComponent JavaScript object and

triggers a DataChangedFcn callback in MATLAB.

After the setup function, you can use your third-party JavaScript libraries as the library
documentation recommends.

Here is a sample HTML file, sampleHTMLFile.html.

 Create HTML File That Can Trigger or Respond to Data Changes

4-23

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener

<!DOCTYPE html>
<html>
<head>
 <script type="text/javascript">

 function setup(htmlComponent) {
 console.log("Setup called:", htmlComponent);

 // Get the initial 'Data' value from MATLAB

 var initialData = htmlComponent.Data;
 console.log("Initial MATLAB Data", initialData);

 // Initialize your HTML or JavaScript here
 // Update things like DOM elements or JavaScript widgets

 var dom = document.getElementById("Content");
 dom.textContent = initialData;

 // Code response to data changes in MATLAB

 htmlComponent.addEventListener("DataChanged", function (event) {
 var changedData = htmlComponent.Data;
 console.log("New Data from MATLAB", changedData);

 // Update your HTML or JavaScript with the new data
 var dom = document.getElementById("Content");
 dom.textContent = changedData;

 });

 // Update 'Data' in MATLAB and trigger
 // the 'DataChangedFcn' callback function

 function updateData(newData) {
 htmlComponent.Data = newData;
 console.log("Changing Data in HTML", newData)
 }
 }
 </script>
</head>

<body>
 <div style="font-family:sans-serif;">
 The data from MATLAB will display here:

 <div id ="Content"></div>
 </div>

 <!Reference supporting files here>

 <script src=""></script>
 <link rel="stylesheet" type="text/css" href="">
 <link rel="icon" type="image/png" href="">

</body>

4 Component Choices and Customizations

4-24

</html>

Debug an HTML File
If you create an HTML component that is not working as expected, or if you want to know what your
data looks like after conversion is complete between MATLAB and JavaScript, open the HTML file in
your system browser. Using your browser Developer Tools (DevTools), you can set breakpoints to test
portions of your setup function. When you debug your HTML file through the system browser, you
must simulate the connection between MATLAB and JavaScript that the setup function provides.

Simulate Sending Data from MATLAB to JavaScript

This example shows how to simulate the way MATLAB sends data to JavaScript so that you can debug
the HTML file.

Open this example in MATLAB. From the Current Folder browser, right-click the file called
sampleHTMLFile.html and select Open Outside MATLAB. The HTML file opens in your system
browser.

1 In MATLAB, run this code to convert a MATLAB cell array of character vectors to a JSON string.
Copy the returned string value to your clipboard.

value = {'one';'two';'three'};
jsontxt = jsonencode(value)

jsontxt =
'["one","two","three"]'

2 In the DevTools of your system browser, open the file to view the code. Create a breakpoint at
line 16, where dom.textContent = initialData;.

3 Open the DevTools console and create the htmlComponent JavaScript object. Use the
JSON.parse method to convert the JSON string you just generated in MATLAB to a JavaScript
object and store it in the Data property of the htmlComponent object.
var htmlComponent = {
 Data: JSON.parse('["one","two","three"]'), // JSON formatted text from MATLAB data
 addEventListener: function() {console.log("addEventListener called with: ", arguments)}
};

4 While still in the DevTools console, call the setup function. When you resume execution of the
setup function, the data appears in the HTML page within DevTools.

setup(htmlComponent)

You can also simulate the "DataChanged" listener callback by JSON encoding and parsing data from
MATLAB into your JavaScript code.

Simulate Sending Data from JavaScript to MATLAB

If you want to debug how data is sent from JavaScript to MATLAB, use the JSON.stringify method
to convert a JavaScript object into a JSON-formatted string. Then, in MATLAB, use the jsondecode
function to convert that string to MATLAB data.

 Create HTML File That Can Trigger or Respond to Data Changes

4-25

See Also
Functions
uihtml | jsonencode | jsondecode

Properties
HTML Properties

More About
• “Display HTML Elements Styled by a Cascading Style Sheet” on page 7-15

4 Component Choices and Customizations

4-26

App Layout

• “Lay Out Apps in App Designer Design View” on page 5-2
• “Manage Resizable Apps in App Designer” on page 5-11
• “Use Grid Layout Managers in App Designer” on page 5-13
• “Apps with Auto-Reflow” on page 5-17

5

Lay Out Apps in App Designer Design View
Design View in App Designer provides a rich set of layout tools for designing modern, professional-
looking applications. It also provides an extensive library of UI components, so you can create various
interactive features. Any changes you make in Design View are automatically reflected in Code
View. Thus, you can configure many aspects of your app without writing any code.

To add a component to your app, use one of these methods:

• Drag a component from the Component Library and drop it on the canvas.
• Click a component in the Component Library and then move your cursor over the canvas. The

cursor changes to a crosshair. Click your mouse to add the component to the canvas in its default
size, or click and drag to size the component as you add it. Some components can only be added in
their default size.

The name of the component appears in the Component Browser after you add it to the canvas. You
can select components in either the canvas or the Component Browser. The selection occurs in both
places simultaneously.

Some components, such as edit fields and sliders, are grouped with a label when you drag them onto
the canvas. These labels do not appear in the Component Browser by default, but you can add them
to the list by right-clicking anywhere in the Component Browser and selecting Include component
labels in Component Browser. If you do not want the component to have a label, you can exclude it
by pressing and holding the Ctrl key as you drag the component onto the canvas.

5 App Layout

5-2

If a component has a label, and you change the label text, the name of the component in the
Component Browser changes to match that text. You can customize the name of the component by
double-clicking it and typing a new name.

Customize Components
You can customize the appearance of a component by selecting it and then editing its properties in
the component tab of the Component Browser. For example, from the Button tab you can change
the alignment of the text that displays on a button.

Some properties control the behavior of the component. For example, you can change the range of
values that a numeric edit field accepts by changing the Limits property.

 Lay Out Apps in App Designer Design View

5-3

When the app runs, the edit field accepts values only within that range.

You can edit some properties directly in the canvas by double-clicking the component. For example,
you can edit a button label by double-clicking it and typing the desired text. To add multiple lines of
text, hold down the Shift key and press Enter.

Align and Space Components
In Design View, you can arrange and resize components by dragging them on the canvas, or you can
use the tools available in the Canvas tab of the toolstrip.

App Designer provides alignment hints to help you align components as you drag them in the canvas.
Orange dotted lines passing through the centers of multiple components indicate that their centers
are aligned. Orange solid lines at the edges indicate that the edges are aligned. Perpendicular lines
indicate that a component is centered in its parent container.

5 App Layout

5-4

As an alternative to dragging components on the canvas, you can align components using the tools in
the Align section of the toolstrip.

When you use an alignment tool, the selected components align to an anchor component. The anchor
component is the last component selected, and it has a thicker selection border than the other
components. To select a different anchor, hold down the Ctrl or Shift key and click the desired
component twice (once to deselect the component, and a second time to select it again). For example,
in the following image, the Format Options label is the anchor. Clicking the Align left button
aligns the left edges of the drop-down and check box to the left edge of the label.

You can control the spacing among neighboring components using the tools in the Space section of
the toolstrip. Select a group of three or more components, and then select an option from the drop-
down list in the Space section of the toolstrip. The Evenly option distributes the space evenly within
the space occupied by the components. The 20 option spaces the components 20 pixels apart. If you
want to customize the number of pixels between the components, type a number into the drop-down
list.

 Lay Out Apps in App Designer Design View

5-5

Next, click Apply Horizontally or Apply Vertically . For example, select Evenly and then
click Apply Vertically to distribute the space among a vertical stack of components.

Group Components
You can group two or more components together to modify them as a single unit. For example, you
can group a set of components after finalizing their relative positions, so you can then move them
without changing that relationship.

To group a set of components, select them in the canvas, and then select Grouping > Group in the
Arrange section of the toolstrip.

The Grouping tool also provides functionality for these common tasks:

• Ungroup all components in a group — Select the group. Then select Grouping > Ungroup.
• Add a component to a group — Select the component and the group. Then select Grouping > Add

to Group.
• Remove a component from a group — Select the component. Then select Grouping > Remove

from Group.

Reorder Components
You can change the order in which components stack on top of each other by using the Reorder tool
in Design View.

For example, create a label and then create an image. By default, the image appears on top of the
label. The default view of the Component Browser shows the components based on their stacking
order, with the image first since it is on top and the label second.

5 App Layout

5-6

To reorder the components so that the label is on top of the image, select the image on the canvas,
and then select Reorder in the toolstrip. You can also right-click the image and select the Reorder
tool. Send the image backward by choosing Send Backward.

The image now is behind the label. When you reorder components, the order of the components
inside the Component Browser also changes.

Modify Tab Focus Order of Components
When users run your app, they can use the Tab key to navigate between app components. To view the
order in which the components come into focus when a user presses Tab, expand the Sort by drop-
down list in the Component Browser and select Tab Order. The Component Browser lists only
the components in the app that can have focus, in the order of focus. You can change the tab order of
the components by clicking and dragging the component names in the Component Browser.

 Lay Out Apps in App Designer Design View

5-7

Alternatively, App Designer can automatically apply a left-to-right and then top-to-bottom tab focus
order for components. Right-click the name of the container in the Component Browser and select
Apply Auto Tab Order. For example, in an app with stacked edit fields for app users to enter their
first name, last name, and age, right-click the app.UIFigure node in the Component Browser and
apply automatic tab ordering. When users the app, they can use the Tab key to navigate between the
edit fields and enter a first name, then a last name, and finally an age.

Arrange Components in Containers
When you drag a component into a container such as a panel, the container turns blue to indicate
that the component is a child of the container. This process of placing components into containers is
called parenting.

The Component Browser shows the parent–child relationship by indenting the name of the child
component under the parent container.

5 App Layout

5-8

Create and Edit Context Menus in App Designer
There are several ways to create context menus in App Designer. Since context menus are visible only
when you right-click a component in the running app, they do not appear in the figure when you are
in Design View. This makes the workflow for editing context menus slightly different than for other
components. These sections describe the ways to create and edit context menus.

Create Context Menus

To create a context menu, drag it from the Component Library onto the UI figure or another
component. This assigns the context menu to the ContextMenu property of that component. When
you create a context menu it appears in an area on the canvas below the figure. This Context Menus
area gives you a preview of each context menu you created and indicates how many components each
one is assigned to. For example, this is how one set of context menus might appear on the canvas:

If you want to create a context menu without assigning it to a component, drag it to the Context
Menus area instead.

Alternatively, create and assign a context menu to a specific component by right-clicking on that
component and selecting Context Menu > Add New Context Menu.

All context menus are created as children of the UI figure and are added to the Component
Browser, even if they are not assigned to a component.

 Lay Out Apps in App Designer Design View

5-9

Edit Context Menus

Edit a context menu by double-clicking it in the Context Menus area or by right-clicking it and
selecting the edit option for the name of your menu. This brings the context menu into the Context
Menus editing area where you can edit and add menu items and submenus.

When you are finished editing, click the back arrow (<) to exit the edit area.

Change Context Menu Assignments

To disassociate a context menu from a component, right-click on the component and select Context
Menu > Unassign Context Menu.

To replace the context menu that is assigned to a component with another one, you can drag the
context menu onto the component, or you can right-click on the component, click Context Menu >
Replace With, and select one of the other context menus you have created. If you only created one
context menu, then the Replace With option does not appear.

Alternatively, select a component in the Component Browser and select Interactivity from the
component tab. Then, expand the ContextMenu drop-down list and select a different context menu
to assign to the component.

See Also

More About
• “App Building Components” on page 4-2
• “App Designer Keyboard Shortcuts” on page 9-2
• “Manage Resizable Apps in App Designer” on page 5-11

5 App Layout

5-10

Manage Resizable Apps in App Designer
Apps you create in App Designer are resizable by default. The components reposition and resize
automatically as the user changes the size of the window at run-time. The AutoResizeChildren
property controls this automatic resize behavior. By default, App Designer enables this property for
the UI figure and all its child containers such as panels and tabs. To set the AutoResizeChildren
property of a child container to a different value, set the value for the child container after setting the
value for the parent.

When the AutoResizeChildren property is enabled for a container, MATLAB manages the size and
position of only the immediate children in the container. Components in nested containers are
managed by the AutoResizeChildren property of their immediate parent. To ensure that the
alignment of components relative to one another (like a grouping of buttons) is preserved when your
app is resized, parent the grouping of components to a panel, instead of directly to the figure.

Resizing Graphics Objects with Normalized Position Units
When graphics objects, like axes or charts, use normalized position units and are the child of a
resizeable container, certain properties of the graphics object are affected after the parent container
is resized. For example, if axes or charts use a value of 'normalized' for the Units property and
are parented to a container with the AutoResizeChildren property set to 'on', then:

• The value of the OuterPosition property for the axes or chart changes when the app is resized.
• The axes or chart does not shrink smaller than a minimum size when the app is resized.

If you want to avoid either of these behaviors, set the AutoResizeChildren property of the
container to 'off'.

Alternatives to Default Auto-Resize Behaviors
If you want more flexibility over how your app automatically resizes, use grid layout managers or the
auto-reflow options in App Designer instead of the AutoResizeChildren property. For more
information about these options, see:

• “Use Grid Layout Managers in App Designer” on page 5-13

 Manage Resizable Apps in App Designer

5-11

• “Apps with Auto-Reflow” on page 5-17

If the resize behaviors supported by AutoResizeChildren, grid layout managers, or auto-reflow
options are not the behaviors you want, then you can create custom resize behaviors by writing a
SizeChangedFcn callback function for the container. For more information, see “Manage App Resize
Behavior Programmatically” on page 10-10.

See Also
UI Figure

More About
• “Lay Out Apps in App Designer Design View” on page 5-2
• “Callbacks in App Designer” on page 6-15

5 App Layout

5-12

Use Grid Layout Managers in App Designer
Grid layout managers provide a way to lay out your app without having to set pixel positions of UI
components in Position vectors. For resizeable apps, grid layout managers provide more flexibility
than the automatic resize behavior in App Designer. They are also easier to configure than it is to
code SizeChangedFcn callback functions.

Add and Configure Grid Layout Manager
In App Designer, you can add a grid layout manager to a blank app or to empty container components
within the figure.

To use a grid layout manager, drag a grid layout from the Component Library onto the canvas.
Alternatively, you can right-click the figure or container and select Apply Grid Layout from the
context menu. A grid layout manager spans the entire app window or container that you place it in. It
is invisible unless you are actively configuring it on the App Designer canvas.

To configure the grid layout manager, in Design View, bring the grid layout into focus by clicking in

the area where you added it. Then, select the button from the upper-left corner of the grid layout
manager, or right-click the grid layout and select Configure Grid Layout. Then, select a row or
column and from the Resize Configuration menu, specify Fit, Weighted, or Fixed. For more
information about these options, see GridLayout Properties. You can also add or remove rows and
columns.

Convert Components from Pixel-Based Positions to Grid Layout
Manager
You can convert the components within a UI figure or container from pixel-based positioning to a grid
layout manager. When you apply a grid layout manager to a UI figure or container that has
components in it, the components get added to the grid layout manager and their Position vectors
get replaced by Layout.Row and Layout.Column values that specify their location in the grid. The
component hierarchy also updates in the Component Browser.

 Use Grid Layout Managers in App Designer

5-13

Grid layout managers support different properties than other container components. In some cases,
you might need to update your callback code if it sets these types of properties, or if it sets
component properties that are not available when they are managed by the grid layout. If your
callbacks or other behaviors do not work as expected, then look for code patterns like the ones lists in
this table.

Symptom or Warning Explanation Suggested Action
Warning: Unable to set
'Position',
'InnerPosition', or
'OuterPosition' for
components in
'GridLayout'.

You cannot set the Position
property on components in a
grid layout manager.

Specify a grid location for the
component by setting the
Layout property with
appropriate Row and Column
values.

Error using
matlab.ui.container.Grid
Layout/set
There is no FontSize
property on the
GridLayout class.

Properties you set on other
container components might not
be supported on the grid layout
manager.

Update your code so that it sets
properties on the intended
container.

A context menu assigned to a
container does not open in the
running app.

When you add a grid layout
manager to a container, it spans
the entire container. This means
that click events happen on the
grid, instead of the container.

Reassign the context menu to
the grid layout.

Convert Components from Grid Layout Manager to Pixel-Based
Positions
Starting in R2022a, you can also remove a grid layout manager from your app and convert the
components in the grid to use pixel-based positioning. To remove a grid layout manager from a
container, right-click the container in the canvas and select Remove Grid Layout.

When you remove a grid layout manager that has components in it from a UI figure or container, the
grid layout manager is deleted and the components get added to the container that originally
contained the grid layout manager. The Layout.Row and Layout.Column values that specified the
component locations in the grid get replaced by Position vectors. The component hierarchy also
updates in the Component Browser.

5 App Layout

5-14

In some cases, you might need to update your callback code if it sets properties of the removed grid
layout manager.

Example: Convert Components to Use Grid Layout Manager Instead of
Pixel-Based Positions
This app shows how to apply a grid layout manager to the figure of an app that already has
components in it. It also shows how to configure the grid layout manager so that the rows and
columns automatically adjust to accommodate changes in size of text-based components.

1 Open the app in App Designer. In Design View, drag a grid layout manager into the figure.
2 Right-click the grid layout manager that you just added to the figure and select Configure Grid

Layout from the context menu.
3 One-by-one, select the rows and columns of the grid that contain the drop-down menus and the

table and change their resize configurations to Fit. When you are finished, verify that in the
Inspector tab of the Component Browser, the ColumnWidth values are
12.64x,1.89x,fit,fit,fit,fit and the RowHeight values are
1x,fit,1.93x,fit,3.07x,fit.

4 Switch to Code View. Update each of the DropDownValueChanged callbacks so that the
allchild functions set the font name and font size on components in app.GridLayout, instead
of in app.UIFigure.

5 Now run the app to see how the grid adjusts to accommodate the components as their sizes
change.

 Use Grid Layout Managers in App Designer

5-15

See Also
Functions
uigridlayout

Properties
GridLayout Properties

5 App Layout

5-16

Apps with Auto-Reflow
Apps with auto-reflow are preconfigured app types that optimize the viewing experience by
automatically adjusting the size, location, and visibility of the app content in response to screen size,
orientation, and platform. Use apps with auto-reflow if you expect to run or share your apps across
multiple environments or desktop resolutions.

What is Auto-Reflow?
Apps with auto-reflow extend the existing auto-resize behaviors that are on by default in all App
Designer apps. These apps detect and adapt to the available screen size when they are first
displayed. Both 2- and 3-panel apps have a large flexible-size panel, intended for visualizations like
plots. As the app changes size, the large panel grows or shrinks, depending on the space available.

When an app is resized beyond a certain predefined threshold, the panels in the app reflow and
reorder to make the best use of the space. As panels reorder themselves, they and the components in
them dynamically adjust in size while extra space between components (whitespace) is also reduced.

 Apps with Auto-Reflow

5-17

When an app becomes very small, auto-resize stops eliminating whitespace and resizing components.
This can put some components outside the visible part of the window. To access these components,
set the Scrollable property of the panels to'on'. This enables scroll bars to appear when
necessary.

Create New App with Auto-Reflow
The App Designer Start Page includes options to create new 2-panel and 3-panel apps with auto-
resize and auto-reflow, and canvas interactions to guide app building. No additional code is needed to
achieve the reflowing and resizing behavior.

Convert Existing App to Use Auto-Reflow

You can also convert an existing app into an app with auto-reflow by expanding the Convert
drop-down menu from the File section of the Canvas tab and selecting 2-Panel App with Auto-
Reflow or 3-Panel App with Auto-Reflow.

When you convert an existing app to an app with auto-reflow, App Designer:

• Creates a duplicate of your app with _converted appended to the file name. Your original app file
is not changed.

5 App Layout

5-18

• Automatically adds preconfigured panels and a grid layout to your app to provide the automatic
reflow and resize behaviors.

• Creates a SizeChangedFcn callback function in order to control the layout of the app as the
figure is resized.

In some cases, after App Designer has converted your app, you may need to update your callback
code or the position of some components. This table describes some examples of adjustments you that
you may need to make.

Symptom Explanation Suggested Action
Components overlap App Designer tries to maintain

the relative positions of your
components, but you may need
to make some minor
adjustments.

Adjust the position of
components as needed.

Callback code does not behave
as expected

When the preconfigured panels
are added to your app the
hierarchy of the components in
your app changes. If your
callbacks reference components
based on their parent, they may
need to be updated.

Update the parent of the
components in your callbacks.

Existing SizeChangedFcn
callback on the UI figure does
not behave as expected

Apps with auto-reflow generate
their own SizeChangedFcn
callback for the figure. If your
app already had a
SizeChangedFcn callback for
the figure, App Designer
disconnects it from the figure,
but it does not remove the code.

After your app has been
converted, modify or remove the
SizeChangedFcn callback that
was disconnected from the
figure. You can assign it to
another container component,
or remove it if it is no longer
needed.

Remove Auto-Reflow Behavior

You can remove auto-reflow behavior from an existing app by expanding the Convert drop-down
menu from the File section of the Canvas tab and selecting App without Auto-Reflow.

When you convert an app with auto-reflow to an app without auto-reflow, App Designer:

• Creates a duplicate of your app with _converted appended to the file name. Your original app file
is not changed.

• Removes the preconfigured grid layout from the app with auto-reflow.
• Removes the SizeChangedFcn callback function that is used to control the layout of the app with
auto-reflow.

Example: App with Auto-Reflow
This app has components within panels that have auto-reflow behavior. Controls for data selection are
parented to the left panel and data visualizations are parented to two tabs in the right panel. Run the

 Apps with Auto-Reflow

5-19

app and change the size of the app window. The app content resizes and reflows based on the app
window size.

See Also
appdesigner

5 App Layout

5-20

App Programming

• “Manage Code in App Designer Code View” on page 6-2
• “Startup Tasks and Input Arguments in App Designer” on page 6-8
• “Create Multiwindow Apps in App Designer” on page 6-11
• “Callbacks in App Designer” on page 6-15
• “Reuse Code Using Helper Functions” on page 6-22
• “Share Data Within App Designer Apps” on page 6-25
• “Compatibility Between Different Releases of App Designer” on page 6-28
• “Use One Callback for Multiple App Designer Components” on page 6-30

6

Manage Code in App Designer Code View
Code View provides most of the same programming features that the MATLAB Editor provides. It
also provides a rich set of features that help you to navigate your code and avoid many tedious tasks.
For example, you can search for a callback by typing part of its name in a search bar. Clicking a
search result scrolls the editor to the definition of that callback. And if you change the name of a
callback, App Designer automatically updates all references to it in your code.

Manage Components, Functions, and Properties
Code View has three panes to help you manage different aspects of your code. This table describes
each of them.

Pane Name Pane Appearance Pane Features
Component
Browser

• Context menu — Right-click a component in the list
to display a context menu that has options for
deleting or renaming the component, adding a
callback, or displaying help. Select the Include
Component Labels in Component Browser
option to display grouped component labels.

• Search bar —Quickly locate a component by typing
part of its name in the search bar.

• Component tab — Use this tab to view or change
property values for the component that is currently
selected. You can also search for a property by
typing part of the name in the search bar at the top
of this tab.

• Callbacks tab — Use this tab to manage the
callbacks for the component that is selected.

Code Browser • Callbacks, Functions, and Properties tabs — Use
these tabs to add, delete, or rename any of the
callbacks, helper functions, or custom properties in
your app. Clicking an item in the Callbacks or
Functions tab scrolls the editor to the
corresponding section in your code. Rearrange the
order of callbacks by selecting the callback you
want to move and then, drag and drop the callback
into its new position in the list. This also
repositions the callback in the editor.

• Search bar — Quickly locate a callback, helper
function, or property by typing part of its name in
the search bar.

6 App Programming

6-2

Pane Name Pane Appearance Pane Features
App Layout • App thumbnail — Use the thumbnail image to

locate components in large, complex apps that have
many components. Selecting a component in the
thumbnail selects the component in the
Component Browser.

Identify Editable Sections of Code
In the Code View editor, some sections of code are editable and some are not. Uneditable sections
are generated and managed by App Designer, whereas editable sections correspond to:

• The body of functions you define (e.g., callbacks and helper functions)
• Custom property definitions

In the default color scheme, uneditable sections of code are gray and editable sections of code are
white.

Program Your App
App Designer defines your app as a MATLAB class. You do not need to understand classes or object-
oriented programming to create an app because App Designer manages those aspects of the code.
However, programming in App Designer requires a different workflow than working strictly with
functions. You can review a summary of this workflow at any time by clicking the Show Tips
button in the Resources tab of the toolstrip.

Manage UI Components

When you add a UI component to your app, App Designer assigns a default name to the component.
Use that name (including the app prefix) to refer to the component in your code. You can change the
name of a component by double-clicking the name in the Component Browser and typing a new
name. App Designer automatically updates all references to that component when you change its
name.

 Manage Code in App Designer Code View

6-3

To use the name of a component in your code, you can save some time by copying the name from the
Component Browser. Place your cursor in an editable area of the code where you want to add the
component name. Then, from the Component Browser, right-click the component name and select
Insert at Cursor. Alternatively, you can drag the component name from the list into your code.

To delete a component, select its name in the Component Browser and press the Delete key.

Manage Callbacks

To make a component respond to user interactions, add a callback. Right-click the component in the
Component Browser and select Callbacks > Add (callback property) callback.

If you delete a component from your app, App Designer deletes the associated callback only if the
callback has not been edited and is not shared with other components.

To delete a callback manually, select the callback name in the Callbacks tab of the Code Browser
and press the Delete key.

For more information about callbacks, see “Callbacks in App Designer” on page 6-15.

Share Data Within Your App

To store data, and share it among different callbacks, create a property. For example, if want your app
to read a data file and allow different callbacks in your app to access that data, store the data in a
property when you load the file.

6 App Programming

6-4

To create a property, expand the Property drop-down in the Editor tab, and select Private
Property or Public Property. App Designer creates a template property definition and places your
cursor next to that definition. Change the name of the property as desired.

properties (Access = public)
 X % Average cost
end

To reference the property in your code, use the syntax app.PropertyName. For example, app.X
references the property named X.

For more information about creating and using properties, see “Share Data Within App Designer
Apps” on page 6-25.

Single-Source Code that Runs in Multiple Places

If you want to execute a block of code in multiple parts of your app, create a helper function. For
example, you might create a helper function to update a plot after the user changes a number in an
edit field or selects an item in a drop-down list. Creating a helper function allows you to single-source
the common commands and avoid having to maintain redundant sets of code.

To add a helper function, expand the Function drop-down in the Editor tab, and select Private
Function or Public Function. App Designer creates a template function and places your cursor in
the body of that function.

To delete a helper function, select the function name in the Functions tab of the Code Browser and
press the Delete key.

For more information about writing helper functions, see “Reuse Code Using Helper Functions” on
page 6-22.

Create Input Arguments

To add input arguments to your app, click App Input Arguments in the Editor tab. Input
arguments are commonly used for creating apps that have multiple windows. For more information,
see “Startup Tasks and Input Arguments in App Designer” on page 6-8.

Add Help Text for Your App

Add an app summary and description to provide information about your app to users. To add help text
or to edit existing help text, click App Help Text . Use the App Help Text dialog box to specify a
short summary of the app and a more detailed explanation of what the app does and how to use it.
App Designer adds this help text as a comment under the app definition statement.

To display app help text in the MATLAB Command Window, call the help function and specify the app
name. In addition, app help text appears at the top of the documentation page for your app. You can
view the documentation page for your app by calling the doc function and specifying the app name.

Limit Your App to Only One Running Instance at a Time

When you create an app in App Designer you have the option to select between two run behaviors for
the app:

 Manage Code in App Designer Code View

6-5

• Allow only a single running instance of the app at a time.
• Allow multiple instances of the app to run at the same time. This is the default behavior.

To change the run behavior of your app, select the app node from the Component Browser. Then,
from the Code Options section of the App tab, select or clear Single Running Instance.

When Single Running Instance is selected and you run the app multiple times, MATLAB reuses the
existing instance and brings it to the front rather than creating a new one. When this option is
cleared, MATLAB creates a new app instance each time you run it and continues to run the existing
instances. These run behaviors apply to apps that you run from the Apps tab on the MATLAB
Toolstrip or from the Command Window.

When you run apps from App Designer their behavior doesn't change whether this option is selected
or cleared. App Designer always closes the existing app instance before creating a new one.

Fix Code Problems and Run-Time Errors
Like the MATLAB Editor, the Code View editor provides Code Analyzer messages to help you
discover errors in your code.

If you run your app directly from App Designer (by clicking Run), App Designer highlights the
source of errors in your code, should any errors occur at run time. To hide the error message, click
the error indicator (the red circle). To make the error indicator disappear, fix your code and save your
changes.

You can also diagnose problems in your code by debugging your app code interactively in App
Designer. For more information, see “Debug MATLAB Code Files”.

6 App Programming

6-6

Personalize Code View Appearance
You can customize how your code appears in the Code View editor. To change your code view

preferences, go to the Home tab of the MATLAB Desktop. In the Environment section, click
Preferences.

Change Color Settings

To change the color settings for editable sections of code and to customize syntax highlighting, select
MATLAB > Colors and adjust the desktop tool colors and the MATLAB syntax highlighting colors.
These settings affect both the App Designer Code View editor and the MATLAB Editor. For more
information, see “Change Desktop Colors”.

To change the background color of uneditable sections of code, select MATLAB > App Designer and
adjust the read-only background color. This setting can be changed only if the Use system colors
option in MATLAB > Color Preferences is unchecked.

Change Tab Preferences

To specify the size of tabs and indents in the Code View editor, select MATLAB > Editor/Debugger
> Tab. From here, you can specify the size of tabs and indents, as well as details about how tabs
behave. These preferences affect both the App Designer Code View editor and the MATLAB Editor.
For more information, see “Editor/Debugger Tab Preferences”.

See Also

Related Examples
• “Callbacks in App Designer” on page 6-15
• “Share Data Within App Designer Apps” on page 6-25
• “Reuse Code Using Helper Functions” on page 6-22
• “Startup Tasks and Input Arguments in App Designer” on page 6-8

 Manage Code in App Designer Code View

6-7

Startup Tasks and Input Arguments in App Designer
App Designer allows you to create a special function that executes when the app starts up, but before
the user interacts with the UI. This function is called the startupFcn callback, and it is useful for
setting default values, initializing variables, or executing commands that affect initial state of the app.
For example, you might use the startupFcn callback to display a default plot or a show a list of
default values in a table.

Create a startupFcn Callback
To create a startupFcn callback, right-click the app node from the top of the Component Browser
hierarchy, and select Callbacks > Add StartupFcn callback. The app node has the same name as
your MLAPP file.

App designer creates the function and places the cursor in the body of the function. Add commands to
this function as you would do for any callback function. Then save and run your app.

See “App with Auto-Reflow That Updates Plot Based on User Selections” on page 7-3 for an
example of an app that has a startupFcn callback.

Define Input App Arguments
The startupFcn callback is also the function where you can define input arguments for your app.
Input arguments are useful for letting the user (or another app) specify initial values when the app
starts up.

To add input arguments to an app, open the app in App Designer and click Code View. Then click
App Input Arguments in the Editor tab.

6 App Programming

6-8

The App Input Arguments dialog box allows you to add or remove input arguments in the function
signature of the startupFcn callback. The app argument is always first, so you cannot change that
part of the signature. Enter a comma-separated list of variable names for your input arguments. You
can also enter varargin to make any of the arguments optional. Then click OK.

After you click OK, App Designer creates a startupFcn callback that has the function signature you
defined in the dialog box. If your app already has a startupFcn callback, then the function signature
is updated to include the new input arguments.

After you have created the input arguments and coded the startupFcn, you can test the app.
Expand the drop-down list from the Run button in the toolstrip. In the second menu item, specify
comma-separated values for each input argument. The app runs after you enter the values and press
Enter.

Note MATLAB might return an error if you click the Run button without entering input arguments in
the drop-down list. The error occurs because the app has required input arguments that you did not
specify.

After successfully running the app with a set of input arguments, the Run button icon contains a blue
circle.

The blue circle indicates that your last set of input values are available for re-running your app
without having to type them again. Up to seven sets of input values are available to choose from.

 Startup Tasks and Input Arguments in App Designer

6-9

Click the top half of the Run button to re-run the app with the last set of values. Or, click the bottom
half of the Run button and select one of the previous sets of values.

The Run button also allows you to change the list of arguments in the function signature. Select Edit
App Input Arguments... from the drop-down list in the bottom half of the Run button.

Alternatively, you can open the same App Input Arguments dialog box by clicking App Input
Arguments in the toolstrip, or by right-clicking the startupFcn callback in the Code Browser.

See “Create Multiwindow Apps in App Designer” on page 6-11 for an example of an app that uses
input arguments.

See Also

Related Examples
• “Callbacks in App Designer” on page 6-15
• “Create Multiwindow Apps in App Designer” on page 6-11

6 App Programming

6-10

Create Multiwindow Apps in App Designer
A multiwindow app consists of two or more apps that share data. The way that you share data
between the apps depends on the design. One common design involves two apps: a main app and a
dialog box. Typically, the main app has a button that opens the dialog box. When the user closes the
dialog box, the dialog box sends the user's selections to the main window, which performs
calculations and updates the UI.

These apps share information in different ways at different times:

• When the dialog box opens, the main app passes information to the dialog box by calling the
dialog box app with input arguments.

• When the user clicks the OK button in the dialog box, the dialog box returns information to the
main app by calling a public function in the main app with input arguments.

Overview of the Process
To create the app described in the preceding section, you must create two separate apps (a main app
and a dialog box app). Then perform these high-level tasks. Each task involves multiple steps.

• “Send Information to the Dialog Box” on page 6-12 — Write a startupFcn callback in the dialog
box app that accepts input arguments. One of the input arguments must be the main app object.
Then, in the main app, call the dialog box app with the input arguments.

• “Return Information to the Main App” on page 6-13 — Write a public function in the main app
that updates the UI based on the user's selections in the dialog box. Because it is a public
function, the dialog box can call it and pass values to it.

• “Manage Windows When They Close” on page 6-13 — Write CloseRequest callbacks in both
apps that perform maintenance tasks when the windows close.

To see an implementation of all the steps in this process, see Plotting App That Opens a Dialog Box on
page 6-14.

If you plan to deploy your app as a web app (requires MATLAB Compiler), creating multiple app
windows is not supported. Instead, consider creating a single-window app with multiple tabs. For
more information, see “Web App Limitations and Unsupported Functionality” (MATLAB Compiler).

 Create Multiwindow Apps in App Designer

6-11

Send Information to the Dialog Box
Perform these steps to pass values from the main app to the dialog box app.

1 In the dialog box app, define input arguments for the startupFcn callback, and then add code
to the callback. Open the dialog box app into Code View. In the Editor tab, click App Input
Arguments . In the App Input Arguments dialog box, enter a comma-separated list of
variable names for your input arguments. Designate one of the inputs as a variable that stores
the main app object. Then click OK.

Add code to the startupFcn callback to store the value of mainapp.

function startupFcn(app,mainapp,sz,c)
 % Store main app object
 app.CallingApp = mainapp;

 % Process sz and c inputs
 ...
end

For a fully coded example of a startupFcn callback, see Plotting App That Opens a Dialog Box
on page 6-14.

2 Call the dialog box app from within a callback in the main app. Open the main app into Code
View and add a callback function for the Options button. This callback disables the Options
button to prevent users from opening multiple dialog boxes. Next, it gets the values to pass to the
dialog box, and then it calls the dialog box app with input arguments and an output argument.
The output argument is the dialog box app object.

function OptionsButtonPushed(app,event)
 % Disable Plot Options button while dialog is open
 app.OptionsButton.Enable = 'off';

 % Get szvalue and cvalue
 %

 % Call dialog box with input values
 app.DialogApp = DialogAppExample(app,szvalue,cvalue);
end

3 Define a property in the main app to store the dialog box app. Keeping the main app open, create
a private property called DialogApp. Select Property > Private Property in the Editor tab.
Then, change the property name in the properties block to DialogApp.

6 App Programming

6-12

properties (Access = private)
 DialogApp % Dialog box app
end

Return Information to the Main App
Perform these steps to return the user's selections to the main app.

1 Create a public function in the main app that updates the UI. Open the main app into Code View
and select Function > Public Function in the Editor tab.

Change the default function name to the desired name, and add input arguments for each option
you want to pass from the dialog box to the main app. The app argument must be first, so specify
the additional arguments after that argument. Then add code to the function that processes the
inputs and updates the main app.

function updateplot(app,sz,c)
 % Process sz and c
 ...
end

For a fully coded example of a public function, see Plotting App That Opens a Dialog Box on page
6-14.

2 Create a property in the dialog box app to store the main app. Open the dialog box app into Code
View, and create a private property called CallingApp. Select Property > Private Property in
the Editor tab. Then change the property name in the properties block to CallingApp.

properties (Access = private)
 CallingApp % Main app object
end

3 Call the public function from within a callback in the dialog box app. Keeping the dialog box app
open, add a callback function for the OK button.

In this callback, pass the CallingApp property and the user's selections to the public function.
Then call the delete function to close the dialog box.

function ButtonPushed(app,event)
 % Call main app's public function
 updateplot(app.CallingApp,app.EditField.Value,app.DropDown.Value);

 % Delete the dialog box
 delete(app)
end

Manage Windows When They Close
Both apps must perform certain tasks when the user closes them. Before the dialog box closes, it
must re-enable the Options button in the main app. Before the main app closes, it must ensure that
the dialog box app also closes.

1 Open the dialog box app into Code View, right-click the app.UIFigure object in the
Component Browser, and select Callbacks > Add CloseRequestFcn callback. Then add code
that re-enables the button in the main app and closes the dialog box app.

 Create Multiwindow Apps in App Designer

6-13

function DialogAppCloseRequest(app,event)
 % Enable the Plot Options button in main app
 app.CallingApp.OptionsButton.Enable = 'on';

 % Delete the dialog box
 delete(app)
end

2 Open the main app into Code View, right-click the app.UIFigure object in the Component
Browser, and select Callbacks > Add CloseRequestFcn callback. Then add code that deletes
both apps.

function MainAppCloseRequest(app,event)
 % Delete both apps
 delete(app.DialogApp)
 delete(app)
end

Example: Plotting App That Opens a Dialog Box
This app consists of a main plotting app that has a button for selecting options in a dialog box. The
Options button calls the dialog box app with input arguments. In the dialog box, the callback for the
OK button sends the user's selections back to the main app by calling a public function in the main
app.

See Also

More About
• “Callbacks in App Designer” on page 6-15
• “Startup Tasks and Input Arguments in App Designer” on page 6-8

6 App Programming

6-14

Callbacks in App Designer
A callback is a function that executes when a user interacts with a UI component in your app. You can
use callbacks to program the behavior of your app. For example, you can write a callback that plots
some data when an app user clicks a button, or a callback that moves the needle of a gauge
component when a user interacts with a slider.

Most components have at least one callback, and each callback is tied to a specific interaction with
the component. However, some components, such as labels and lamps, do not have callbacks because
those components only display information. To see the list of callbacks that a component supports,
select the component and click the Callbacks tab in the Component Browser.

Create Callback Functions
There are several ways to create a callback for a UI component. You can take different approaches
depending on where you are working in App Designer. Choose the most convenient approach from
this list:

• Right-click a component in the canvas, Component Browser, or App Layout pane, and select
Callbacks > Add (callback property) callback.

• Select the Callbacks tab in the Component Browser. The left side of the Callbacks tab shows
the supported callback properties. The drop-down list next to each callback property allows you to
specify a name for the callback function or to select a default name in angle brackets <>. If your
app has existing callbacks, the drop-down list includes those callbacks. Select an existing callback
when you want multiple UI components to execute the same code.

 Callbacks in App Designer

6-15

•
In code Code View, in the Editor tab, click Callback. Alternatively, in the Code Browser

pane, on the Callbacks tab, click the button.

Specify these options in the Add Callback Function dialog box:

• Component — Specify the UI component that executes the callback.
• Callback — Specify the callback property. The callback property maps the callback function to

a specific interaction. Some components have more than one callback property available. For
example, sliders have two callback properties: ValueChangedFcn and ValueChangingFcn.
The ValueChangedFcn callback executes after the user moves the slider and releases the
mouse. The ValueChangingFcn callback for the same component executes repeatedly while
the user moves the slider.

• Name — Specify a name for the callback function. App Designer provides a default name, but
you can change it in the text field. If your app has existing callbacks, the Name field has a
drop-down arrow next to it, indicating that you can select an existing callback from a list.

6 App Programming

6-16

Program Callback Functions
When you create a callback for a component, App Designer generates a callback function in Code
View and places your cursor in the function. Write code in this callback function to program the
callback behavior.

Callback Input Arguments

All callback functions that App Designer creates have these input arguments in the function
signature:

• app — The app object. Use this object to access UI components in the app as well as other
variables stored as properties.

• event — An object that contains specific information about the app user's interaction with the UI
component.

The app argument provides the app object to your callback. You can access any component (and all
component-specific properties) within any callback by using this syntax:

app.Component.Property

For example, this command sets the Value property of a gauge to 50. In this case, the name of the
gauge is PressureGauge:

app.PressureGauge.Value = 50;

The event argument provides an object that has different properties, depending on the specific
callback that is executing. The object properties contain information that is relevant to the type of
interaction that the callback is responding to. For example, the event argument in a
ValueChangingFcn callback of a slider contains a property called Value. That property stores the
slider value as the user moves the thumb (before the user releases the mouse). Here is a slider
callback function that uses the event argument to make a gauge track the value of the slider:

function SliderValueChanging(app,event)
 latestvalue = event.Value; % Current slider value
 app.PressureGauge.Value = latestvalue; % Update gauge
end

To learn more about the event argument for a specific component's callback function, see the
property page for that component. Right-click the component, and select Help on Selection to open
the property page. For a list of property pages for all UI components, see “App Building Components”
on page 4-2.

Share Data Between Callback Functions

To store data that needs to be accessed by multiple callbacks, create a property. Properties contain
data that belongs to the app. You can create private properties to store data to be shared within the
app only, or public properties to store data to be shared outside of the app (for example, with a script,
function, or other app that needs access to the data).

Create a public or private property by clicking the Property button in the Editor tab in Code
View. Enter a name for your property. You can then assign and access the property value within all of
your app callbacks using the syntax app.PropertyName.

For more information, see “Share Data Within App Designer Apps” on page 6-25.

 Callbacks in App Designer

6-17

Share Callbacks Between Multiple Components
Sharing callbacks between components is useful when you want to offer multiple ways of doing
something in your app. For example, your app can respond the same way when a user clicks a button
or presses the Enter key in an edit field.

After you create a callback for one component, you can share it by assigning it to a second
component. Right-click the second component in the Component Browser and select Callbacks >
Select existing callback. When the Select Callback Function dialog box displays, select the existing
callback from the Name drop-down list.

For an example of an app that shares a callback between two components, see “Use One Callback for
Multiple App Designer Components” on page 6-30.

Create and Assign Callbacks Programmatically
You can also create and assign callback functions programmatically in your app code. Use this
method to create a callback for a component or graphics object that does not appear in the
Component Browser. For example, you can programmatically assign a callback to a dialog box that
you create in your app code, or to a Line object that you plot in a UIAxes component.

Create the callback function as a private function by selecting Function > Private Function in the
Editor tab of the toolstrip. The function must have app, src, and event as the first three arguments.
Here is an example of a callback written as a private function:

methods (Access = private)

 function myclosefcn(app,src,event)
 disp('Have a nice day!');
 end

end

Assign the callback function to a component by specifying the callback property value as a handle to
your callback function using the syntax @app.FunctionName. For example, this code creates an
alert dialog box that assigns the myclosefcn function to the CloseFcn callback property. The
function executes when the dialog box closes.

uialert(app.UIFigure,"File not found","Alert", ...
 "CloseFcn",@app.myclosefcn);

To write a callback function that accepts additional input arguments, specify the additional
arguments after the first three arguments. For example, this callback accepts one additional input,
name:

methods (Access = private)

 function displaymsg(app,src,event,name)
 msg = name + " dialog box closed";
 disp(msg);
 end

end

6 App Programming

6-18

To assign this callback to a component, specify the component callback property as cell array. The
first element in the cell array must be the function handle. Subsequent elements must be the
additional input values. For example:

uialert(app.UIFigure,"File not found","Alert", ...
 "CloseFcn",{@app.displaymsg,"Alert"});

For more information, see “Add UI Components to App Designer Programmatically” on page 4-20.

Search for Callbacks in Your Code
If your app has a lot of callbacks, you can quickly search and navigate to a specific callback by typing
part of the name in the search bar at the top of the Callbacks tab in the Code Browser. After you
begin typing, the Callbacks pane clears, except for the callbacks that match your search.

Click a search result to scroll the callback into view. Right-clicking a search result and selecting Go
To places your cursor in the callback function.

Change or Disconnect Callbacks
To assign a different callback to a component, select the component in the Component Browser.
Then click the Callbacks tab and select a different callback from the drop-down list. The drop-down
list displays only the existing callbacks.

 Callbacks in App Designer

6-19

To disconnect a callback that is shared with a component, select the component in the Component
Browser. Then click the Callbacks tab and select <no callback> from the drop-down menu.
Selecting this option only disconnects the callback from the component. It does not delete the
function definition from your code, nor does it disconnect the callback from any other components.
After you disconnect a callback, you can create a new callback for the component or leave the
component without a callback function.

Delete Callbacks
If your code contains a callback function that is not being used by any components in your app, you
can delete the function entirely. Delete a callback by right-clicking the callback in the Callbacks tab
of the Code Browser and selecting Delete from the context menu.

6 App Programming

6-20

Example: App with a Slider Callback
This app contains a gauge that tracks the value of a slider as the user moves the thumb. The
ValueChangingFcn callback for the slider gets the current value of the slider from the event
argument. Then it moves the gauge needle to that value.

See Also

Related Examples
• “Share Data Within App Designer Apps” on page 6-25
• “Use One Callback for Multiple App Designer Components” on page 6-30
• “Add UI Components to App Designer Programmatically” on page 4-20
• “Write Callbacks for Apps Created Programmatically” on page 11-2

 Callbacks in App Designer

6-21

Reuse Code Using Helper Functions
Helper functions are MATLAB functions that you define in your app so that you can call them at
different places in your code. For example, you might want to update a plot after the user changes a
number in an edit field or selects an item in a drop-down list. Creating a helper function allows you to
single-source the common commands and avoid having to maintain redundant code.

There are two types of helper functions: private functions, which you can call only inside your app,
and public functions, which you can call either inside or outside your app. Private functions are
commonly used in single-window apps, while public functions are commonly used in multiwindow
apps.

Create a Helper Function
Code View provides a few different ways to create a helper function:

• Expand the drop-down menu from the bottom half of the Function button in the Editor tab.
Select Private Function or Public Function.

• Select the Functions tab in the Code Browser, expand the drop-down list on the button,
and select Private Function or Public Function.

When you make your selection, App Designer creates a template function and places your cursor in
the body of that function. Then you can update the function name and its arguments, and add your
code to the function body. The app argument is required, but you can add more arguments after the
app argument. For example, this function creates a surface plot of the peaks function. It accepts an
additional argument n for specifying the number of samples to display in the plot.

6 App Programming

6-22

methods (Access = private)

 function updateplot(app,n)
 surf(app.UIAxes,peaks(n));
 colormap(app.UIAxes,winter);
 end

end

Call the function from within any callback. For example, this code calls the updateplot function and
specifies 50 as the value for n.

updateplot(app,50);

Managing Helper Functions
Managing helper functions in the Code Browser is similar to managing callbacks. You can change
the name of a helper function by double-clicking the name in the Functions tab of the Code
Browser and typing a new name. App Designer automatically updates all references to the function
when you change its name.

If your app has numerous helper functions, you can quickly search and navigate to a specific function
by typing part of the name in the search bar at the top of the Functions tab. After you begin typing,
the Functions tab clears, except for the items that match your search.

Click a search result to scroll the function into view. Right-clicking a search result and selecting Go
To places your cursor in the function.

To delete a helper function, select its name in the Functions tab and press the Delete key.

Example: Helper Function that Initializes Plots and Displays Updated
Data
This app shows how to create a helper function that initializes two plots and updates one of them in a
component callback. The app calls the updateplot function at the end of the StartupFcn callback
when the app starts up. The UITableDisplayDataChanged callback calls the same function to
update one of the plots when the user sorts columns or changes a value in the table.

 Reuse Code Using Helper Functions

6-23

See Also

Related Examples
• “Callbacks in App Designer” on page 6-15
• “Create Multiwindow Apps in App Designer” on page 6-11

6 App Programming

6-24

Share Data Within App Designer Apps
Using properties is the best way to share data within an app because properties are accessible to all
functions and callbacks in an app. All UI components are properties, so you can use this syntax to
access and update UI components within your callbacks:

app.Component.Property

For example, these commands get and set the Value property of a gauge. In this case, the name of
the gauge is PressureGauge.

x = app.PressureGauge.Value; % Get the gauge value
app.PressureGauge.Value = 50; % Set the gauge value to 50

However, if you want to share an intermediate result, or data that multiple callbacks need to access,
then define a public or private property to store your data. Public properties are accessible both
inside and outside of the app, whereas private properties are only accessible inside of the app. Code
View provides a few different ways to create a property:

• Expand the drop-down menu from the bottom half of the Property button in the Editor tab.
Select Private Property or Public Property.

• Click on the Properties tab in the Code Browser, expand the drop-down list on the button,
and select Private Property or Public Property.

After you select an option to create a property, App Designer adds a property definition and a
comment to a properties block.

 Share Data Within App Designer Apps

6-25

properties (Access = public)
 Property % Description
end

The properties block is editable, so you can change the name of the property and edit the comment
to describe the property. For example, this property stores a value for average cost:

properties (Access = public)
 X % Average cost
end

If your code needs to access a property value when the app starts, you can initialize its value in the
properties block or in the startupFcn callback.

properties (Access = public)
 X = 5; % Average cost
end

Elsewhere in your code, use dot notation to get or set the value of a property:

y = app.X % Get the value of X
app.X = 5; % Set the value of X

Example: Share Plot Data and a Drop-Down List Selection
This app shows how to share data in a private property and a drop-down list. It has a private property
called Z that stores plot data. The callback function for the edit field updates Z when the user
changes the sample size. The callback function for the Update Plot button gets the value of Z and
the colormap selection to update the plot.

6 App Programming

6-26

See Also

Related Examples
• “Callbacks in App Designer” on page 6-15
• “Create Multiwindow Apps in App Designer” on page 6-11

 Share Data Within App Designer Apps

6-27

Compatibility Between Different Releases of App Designer
Starting in R2018a, the apps you save in App Designer have a new format. This new file format might
impact your ability to edit newer apps in previous releases, but it has no impact on your ability to run
them in previous releases.

If you try to edit an app, created in R2018a or later, in an earlier release of App Designer, the new
format is not recognized after saving your changes. You see a message such as this.

To enable editing of newer apps in a previous release, save the app in the release-specific format.
Select Save > Save Copy As from any of the tabs in the toolstrip.

In the Save Copy As window, select a type from the Save as Type drop-down list.

6 App Programming

6-28

Save Copy As Versus Save As
The Save Copy As and Save As options serve different purposes, and their behavior is also different.

• To save your app in a format that can be edited in earlier releases, use Save Copy As. When you
use this option, App Designer saves the copy of the app in the specified folder, but it does not
replace the app in your current session.

• To save a copy of your app that is editable only with the current release, use Save As. When you
use this option, App Designer saves the copy of the app in the specified folder and replaces the
app in your current session.

Opening Apps for Editing in a Newer Release
If you open an app for editing that was created in a previous release, App Designer updates the app,
and displays a message such as this one.

See Also
appdesigner

 Compatibility Between Different Releases of App Designer

6-29

Use One Callback for Multiple App Designer Components
Sharing callbacks between components is useful when you want to offer multiple ways of doing
something in your app. For example, your app can respond the same way when a user clicks a button
or presses the Enter key in an edit field.

Example of a Shared Callback
This example shows how to create an app containing two UI components that share a callback. The
app displays a contour plot with the specified number of levels. When the user changes the value in
the edit field, they can press Enter or click the Update Plot button to update the plot.

1 In App Designer, drag an Axes component from the Component Library onto the canvas. Then
make these changes:

• Double-click the title, and change it to Select Contours of Peaks Function.
• Double-click the X and Y axis labels, and press the Delete key to remove them.

2 Drag an Edit Field (Numeric) component below the axes on the canvas. Then make these
changes:

• Double-click the label next to the edit field and change it to Levels:.
• Double-click the edit field and change the default value to 20.

3 Drag a Button component next to the edit field on the canvas. Then double-click its label and
change it to Update Plot.

4 Add a callback function that executes when the user clicks the button. Right-click the Update
Plot button and select Callbacks > Add ButtonPushedFcn callback.

5 App Designer switches to the Code View. Paste this code into the body of the
UpdatePlotButtonPushed callback:

Z = peaks(100);
nlevels = app.LevelsEditField.Value;
contour(app.UIAxes,Z,nlevels);

6 Next, share the callback with the edit field. In the Component Browser, right-click the
app.LevelsEditField component and select Callbacks > Select existing callback. When
the Select Callback Function dialog box displays, select UpdatePlotButtonPushed from the
Name drop-down list.

6 App Programming

6-30

Sharing this callback allows the user to update the plot after changing the value in the edit field
and pressing Enter. Alternatively, they can change the value and press the Update Plot button.

7 Next, set the axes aspect ratio and limits. In the Component Browser, select the app.UIAxes
component. Then, make the following changes in the Axes tab:

• Set PlotBoxAspectRatio to 1,1,1.
• Set XLim and YLim to 0,100.

8 Click Run to save and run the app.

See Also

Related Examples
• “Callbacks in App Designer” on page 6-15
• “Share Data Within App Designer Apps” on page 6-25
• “Manage Code in App Designer Code View” on page 6-2

 Use One Callback for Multiple App Designer Components

6-31

App Designer Examples

7

App That Calculates and Plots Data Based on Numerical Input
This app shows how to use numeric edit fields to create a simple mortgage amortization calculator. It
includes the following components to collect user input, calculate monthly payments, and plot the
principal and interest amounts over time:

• Numeric edit fields — allow users to enter values for the loan amount, interest rate, and loan
period. MATLAB® automatically checks to make sure the values are numeric and within the range
specified by the app. A fourth numeric edit field displays the resulting monthly payment amount
based on the inputs.

• Push button — executes a callback function to calculate the monthly payment value.
• Axes — used to plot the principal and interest amounts versus mortgage installment.

To open the app in App Designer, enter this command in the MATLAB Command Window:

openExample('matlab/MortgageCalculatorExample')

See Also
UIAxes

Related Examples
• “Callbacks in App Designer” on page 6-15

7 App Designer Examples

7-2

App with Auto-Reflow That Updates Plot Based on User
Selections

This app shows how to define controls and tabs within the panels of an app with auto-reflow. The
controls are in an anchored panel on the left. The right panel that reflows contains two tabs. One tab
displays a chart and user interface components for adjusting the chart. The other tab contains a table
with the data used to make the chart. User selections update both the plot and the table. The app
responds to resizing by automatically growing, shrinking, and reflowing the app content.

The app includes these components:

• Check boxes — used to update the plot and table when the user selects or clears a check box.
• Switch — used to toggle the data that is visualized in the chart
• Button group containing radio buttons — used to manage exclusive selection of radio buttons.

When the user selects a radio button, the button group executes a callback function to update the
plot with the appropriate data.

• Slider — used to adjust histogram bin width. This slider only appears when the Histogram
plotting option is selected in the button group.

• Table — used to view the data associated with the chart.

See Also
UIAxes | Table

Related Examples
• “Callbacks in App Designer” on page 6-15

 App with Auto-Reflow That Updates Plot Based on User Selections

7-3

App That Uses Grid Layout to Manage Component Positions
and Resizing

This app shows how to use a grid layout manager to control the alignment and resizing of knobs when
the app is resized. The app also uses the following components to gather user input and plot the
resulting wave form:

• Numeric edit fields — allow users to enter the pulse frequency and length. MATLAB®
automatically checks to make sure the values are numeric and within the range specified by the
app.

• Switches — allow users to control automatic plot updates and toggle between plots in the time
and frequency domains.

• Drop-down menu — allows users to select from a list of pulse shapes, such as Gaussian, sinc, and
square.

• Knobs — allow users to modify the pulse by specifying a window function, modulating the signal,
or applying other enhancements.

See Also
Functions
uigridlayout

Properties
UIAxes

Related Examples
• “Callbacks in App Designer” on page 6-15

7 App Designer Examples

7-4

App That Displays Data in a Hierarchy Using Tree
This app shows how to add a tree to an App Designer app. The app selects data from patients.xls
and displays it in a hierarchy using a tree. The tree contains three nodes that display hospital names.
Each hospital node contains nodes that display patient names. When the user clicks a patient name in
the tree, the Patient Information panel displays data such as age, gender, and health status. When
the user edits the patient data, the app asks the user to confirm the change and then stores the
change in the table variable.

In addition to the tree and Patient Information panel, this app also contains the following UI
components:

• Read-only text field — Used to display the patient’s name
• Numeric edit field — Used to display and accept changes to the patient’s age
• Drop-down list — Used to display and accept changes to the patient’s gender and health status
• Check box — Used to display and accept changes to the patient’s smoking history
• Confirmation dialog box — Used to confirm changes to patient data

See Also
uitree | uitreenode | readtable | table

Related Examples
• “Add UI Components to App Designer Programmatically” on page 4-20

 App That Displays Data in a Hierarchy Using Tree

7-5

Create App That Uses Multiple Axes to Display Results of
Image Analysis

This app shows how to configure multiple axes components in App Designer. The app displays an
image in one axes component, and displays histograms of the red, green, and blue pixels in the other
three.

This example also demonstrates the following app building tasks:

• Managing multiple axes
• Reading and displaying images
• Browsing the user’s file system using the uigetfile function
• Displaying an in-app alert for invalid input (in this case, an unsupported image file)
• Writing a StartupFcn callback to initialize the app with a default image

See Also
Functions
imagesc | imread | uialert

Properties
UIAxes

7 App Designer Examples

7-6

Create Polar Axes Programmatically in an App
This app shows how to display a plot by creating the axes programmatically before calling a plotting
function. In this case, the app plots a polar equation using the polaraxes and polarplot functions.
When the user changes the value of a or b, or when they select a different line color, the plot updates
to reflect their changes.

This example also demonstrates these app building concepts:

• Creating different types of axes programmatically to display plots that uiaxes does not support
• Calling a plotting function in App Designer
• Sharing a callback with multiple components
• Displaying Unicode® characters in a label

See Also
polaraxes | polarplot

Related Examples
• “Display Graphics in App Designer” on page 3-15

 Create Polar Axes Programmatically in an App

7-7

Create App with a Table That Can Be Sorted and Edited
Interactively

This app shows how to display data in a table UI component. The app loads a spreadsheet into a table
array when the app starts up. Then it displays and plots a subset of the data from the spreadsheet.
One of the plots updates when the user edits values or sorts columns in the table UI component at
run time.

This example demonstrates the following app building tasks:

• Displaying the contents of a table array in a table UI component
• Enabling some of the interactive features of a table UI component

See Also
readtable | table | uitable

Related Examples
• “Table Array Data Types in App Designer Apps” on page 4-15

7 App Designer Examples

7-8

• “Programmatic App That Displays a Table” on page 15-8

 Create App with a Table That Can Be Sorted and Edited Interactively

7-9

Create App with Timer Object Configured Programmatically
This app shows how to create a timer object in App Designer that executes a function at regular time
intervals. In this case, the app generates random data every second and plots the result.

This example also demonstrates the following app building tasks:

• Writing a callback for an object created programmatically (in this case, the timer object)
• Configuring a timer object to execute its callback at regular intervals
• Starting the timer when the user clicks the Start button
• Stopping the timer when the user clicks the Stop button
• Deleting the timer when the app closes

See Also
Functions
timer | memory

7 App Designer Examples

7-10

Properties
UIAxes

 Create App with Timer Object Configured Programmatically

7-11

Create App with Timer Object that Queries Website Data
This app shows how to create a timer object in App Designer that executes a function at regular time
intervals. In this case, the app queries the wind speed from a web site every five seconds and plots
the returned value.

This example also demonstrates the following app building tasks:

• Writing a callback for an object created programmatically (in this case, the timer object)
• Configuring a timer object to execute its callback at regular intervals
• Starting the timer when the user clicks the Start button
• Stopping the timer when the user clicks the Stop button
• Deleting the timer when the app closes

See Also
Classes
timer

7 App Designer Examples

7-12

Functions
webread

Properties
UIAxes

 Create App with Timer Object that Queries Website Data

7-13

Share Data in Multiwindow Apps
This example shows how to pass data from one app to another. This multiwindow app consists of a
main app that calls a dialog box app with input arguments. The dialog box displays a set of options for
modifying aspects of the main app. When the user closes it, the dialog box sends their selections back
to the main app.

This example demonstrates the following app building tasks:

• Calling an app with input arguments
• Calling an app with a return argument that is the app object
• Passing values to an app by calling a public function in the app
• Writing CloseRequestFcn callbacks to perform maintenance tasks when each app closes

See Also

Related Examples
• “Create Multiwindow Apps in App Designer” on page 6-11
• “Startup Tasks and Input Arguments in App Designer” on page 6-8
• “Reuse Code Using Helper Functions” on page 6-22

7 App Designer Examples

7-14

Display HTML Elements Styled by a Cascading Style Sheet
This app shows how to reference supporting files from your HTML file, like a Cascading Style Sheet
and an image used by the CSS file. This app also demonstrates how to plot data in MATLAB® that is
generated in JavaScript® when an HTML button is clicked.

See Also
Functions
uihtml

Properties
HTML Properties

More About
• “Create HTML File That Can Trigger or Respond to Data Changes” on page 4-23

 Display HTML Elements Styled by a Cascading Style Sheet

7-15

Advanced App Designer Examples

• “Organize App Data Using MATLAB Classes” on page 8-2
• “Create Responsive Apps” on page 8-8
• “Improve App Startup Time” on page 8-12
• “Find and Create UI Components and Charts” on page 8-16

8

Organize App Data Using MATLAB Classes

In this section...
“Open App Designer App” on page 8-3
“Write a MATLAB Class to Manage App Data” on page 8-3
“Test Algorithm” on page 8-5
“Share Data with App” on page 8-6
“Pulse Generator App That Stores Data in a Class” on page 8-6

As the size and complexity of an app increases, it can be difficult to organize and manage the code to
perform calculations, process data, and manage user interactions in one file. This example shows how
to take an app created entirely in App Designer and reorganize the app code into two parts:

• Code that stores your app data and the algorithms to process that data, implemented as a
MATLAB class

• Code that displays the app and manages user interactions, implemented as an App Designer app

Separating the data and algorithms from the app has multiple benefits.

• Scalability — It is easier to extend app functionality when the code is organized into multiple self-
contained portions.

• Reusability — You can reuse your data and algorithms across multiple apps with minimal effort.
• Testability — You can run and test your algorithms in MATLAB, independently from the app.

This example uses the PulseGenerator app, which lets users specify options to generate a pulse
and visualize the resulting waveform. The goal of the example is to reorganize the code in the original
app by performing these steps:

1 Create a Pulse class that stores pulse data, such as the type, frequency, and length of the pulse,
and the algorithm used to take that pulse data and generate the resulting waveform.

2 Modify the code in App Designer to use the Pulse class to perform calculations and to update
the app display.

In the final app, when a user interacts with the app controls, the code in App Designer updates the
data stored in the Pulse class and calls a class method to generate the waveform data. App Designer
then updates the app display with the new waveform visualization.

To view and run the final app, see “Pulse Generator App That Stores Data in a Class” on page 8-6.

8 Advanced App Designer Examples

8-2

Open App Designer App
Run this command to open a working copy of the PulseGenerator app.

openExample('matlab/PulseGeneratorAppExample')

Use this app as a starting point as you modify and reorganize the app code.

Write a MATLAB Class to Manage App Data
Separating the data and algorithms that are independent of the app interface allows you to organize
the different tasks that your code performs, and to test and reuse these tasks independently of one
another. Implementing this portion of your app as a MATLAB class has these benefits:

• You can manage a large amount of interdependent data using object-oriented design.
• You can easily share and update this data within your App Designer app.

For more information about the benefits of object-oriented design in MATLAB, see “Why Use Object-
Oriented Design”.

Define Class

To determine which aspects of your app to separate out as a class, consider what parts of your app
code do not directly impact the app user interface, and which parts of your app you might want to
test separately from the running app.

In the pulse generator app, the app data consists of the pulse that the user wants to visualize. Create
a new class file named Pulse.m in the same folder as the PulseGenerator.mlapp app file. Define a
handle class named Pulse by creating a classdef block.

classdef Pulse < handle
% ...
end

Store your app data and write functions to implement your app algorithms within the classdef
block.

Create Properties

Use properties to store and share app data. To define properties, create a properties block. Create
properties for data that the app needs access to and for data that is processed by algorithms
associated with the app.

In the Pulse class, create a properties block to hold the data that defines a pulse, such as the pulse
type and the frequency and length of the pulse.

 properties
 Type
 Frequency
 Length
 Edge
 Window
 Modulation
 LowPass
 HighPass

 Organize App Data Using MATLAB Classes

8-3

 Dispersion
 end

 properties (Constant)
 StartFrequency = 10;
 StopFrequency = 20;
 end

For more information about defining properties in a class, see “Property Syntax”.

Create Functions

Define functions that operate on the app data in a methods block in the class definition.

For example, the original PulseGenerator app has a function defined in App Designer named
generatePulse that computes a pulse based on the pulse properties. Because this algorithm does
not need to update the app display or directly respond to user interaction, you can move the function
definition from App Designer into the Pulse class.

Create a methods block and copy the generatePulse function definition into the block. To keep the
class definition independent of the app, update the references to UI component values in the app to
instead query the values of Pulse object properties using the syntax obj.Property. The beginning
of your function definition should look like this:

 methods
 function result = generatePulse(obj)

 type = obj.Type;
 frequency = obj.Frequency;
 signalLength = obj.Length;
 edge = obj.Edge;
 window = obj.Window;
 modulation = obj.Modulation;
 lowpass = obj.LowPass;
 highpass = obj.HighPass;
 dispersion = obj.Dispersion;

 startFrequency = obj.StartFrequency;
 stopFrequency = obj.StopFrequency;

 t = -signalLength/2:1/frequency:signalLength/2;
 sig = (signalLength/(8*edge))^2;

 switch type
 % The rest of the code is the same as the original
 % function in the PulseGenerator app.
 % ...
 end
 end

To view the complete function code, see “Pulse Generator App That Stores Data in a Class” on page 8-
6.

For more information about writing class methods, see “Define Class Methods and Functions”.

8 Advanced App Designer Examples

8-4

Test Algorithm
One of the benefits of storing app data in a class is that you can interact with the data object and test
your algorithms independently the running app.

For example, create a Pulse object and set its properties in the Command Window.

p = Pulse;
p.Type = 'gaussian';
p.Frequency = 500;
p.Length = 2;
p.Edge = 1;
p.Window = 0;
p.Modulation = 0;
p.LowPass = 0.4;
p.HighPass = 0;
p.Dispersion = 0;

Call the generatePulse method of the Pulse object p. Visualize the pulse in a plot.

step = 1/p.Frequency;
xlim = p.Length/2;
x = -xlim:step:xlim;
y = generatePulse(p);
plot(x,y);

You can also test your algorithm using a testing framework. For more information, see “Ways to Write
Unit Tests”.

 Organize App Data Using MATLAB Classes

8-5

Share Data with App
To access the data object from within App Designer, create an instance of the class in your App
Designer code and store it in a property of your app. You can set and query the object properties that
store the data and call the class functions to process the data in response to user interactions.

In the PulseGenerator app in App Designer, create a new private property by clicking the Property
button in the Editor tab. Add a private property named PulseObject to hold the Pulse object.

Then, in the StartupFcn for the app, create a Pulse object by adding this code to the top of the
function definition.

app.PulseObject = Pulse;

To generate the pulse for visualization when a user interacts with one of the controls in the app,
modify the updatePlot function. This function is called in multiple callback functions of the
PulseGenerator app, whenever the user interacts with one of the controls in the app.

In the updatePlot function, first set the properties of the app.Pulse object using the values of the
app controls by adding this code to the top of the function.

app.PulseObject.Type = app.TypeDropDown.Value;
app.PulseObject.Frequency = app.FrequencyEditField.Value;
app.PulseObject.Length = app.SignalLengthsEditField.Value;
app.PulseObject.Edge = app.EdgeKnob.Value;
app.PulseObject.Window = app.WindowKnob.Value;
app.PulseObject.Modulation = str2double(app.ModulationKnob.Value);
app.PulseObject.LowPass = app.LowPassKnob.Value;
app.PulseObject.HighPass = app.HighPassKnob.Value;
app.PulseObject.Dispersion = str2double(app.DispersionKnob.Value);

Then, update the call to the generatePulse function by replacing the input argument with
app.PulseObject.

p = generatePulse(app.PulseObject);

Finally, ensure that the app calls the newly defined generatePulse function in the Pulse class by
deleting the generatePulse function that is defined in App Designer.

To view the complete app code, see “Pulse Generator App That Stores Data in a Class” on page 8-6.

Pulse Generator App That Stores Data in a Class
This example shows the final PulseGenerator app, with the app data and algorithms implemented
separately in the Pulse class. Run the example by clicking the Run button in App Designer.

8 Advanced App Designer Examples

8-6

See Also

Related Examples
• “Role of Classes in MATLAB”
• “Components of a Class”

 Organize App Data Using MATLAB Classes

8-7

Create Responsive Apps
To create apps that respond quickly and smoothly to user input, you can use performance
improvement techniques in your code. This topic covers some of these techniques, including loading
and updating only the parts of your app that are visible, and taking advantage of app building
capabilities that are optimized for responsiveness. Use any techniques that are helpful for the type of
apps that you create and the user experience you want to provide.

• “Improve App Startup Time” on page 8-8 — Load only the app content that is visible on startup.
This technique can be useful if your app contains multiple tabs or large tree UI components.

• “Improve App Update Time” on page 8-8 — Perform updates and calculations only when they
are needed. This technique can be useful if your app contains ValueChangingFcn callbacks or
code that updates the data in a table UI component.

• “Improve App Resize Behavior” on page 8-9 — Use a grid layout manager to manage app resize
behavior. This technique can be useful if your app uses a SizeChangedFcn callback or the
Position property to resize UI components.

• “Improve App Responsiveness to User Input” on page 8-10 — Execute a response to user input as
soon as possible. This technique can be useful if your app waits for user input by using a while
loop, or if your app performs expensive calculations that leave the interface unresponsive.

• “Improve Performance of Graphics in Your App” on page 8-11 — Fix performance bottlenecks
caused by intensive plotting and data exploration. These techniques can be useful if your app
contains animations or interactive plots and charts.

Improve App Startup Time
When you start up an app, your code performs many tasks to load the app content. These tasks can
include creating UI components, setting component properties, processing data, and performing
setup calculations. As apps grow larger, these tasks can take more time, which results in longer app
startup times. You can improve the startup time of your app by initializing and performing
calculations for only the parts of your app that are visible at startup. You can then use callbacks to
initialize and update other portions of the app after the app is loaded, and only when the app user
needs to see them.

Some types of apps where this technique can have significant benefits include:

• Apps with multiple tabs — Initialize and update only the content in the tab that is visible.
• Apps containing trees with many nodes — Create child nodes only after an app user expands a

parent node in the tree.

For more information, and for examples of how to update your app code in these cases, see “Improve
App Startup Time” on page 8-12.

Improve App Update Time
To improve responsiveness while your app is running, minimize the number of updates made in the
app code. When your app performs updates and calculations only when they are needed, interactions
and animations in the app can feel much smoother.

8 Advanced App Designer Examples

8-8

Use ValueChangedFcn Callbacks Instead of ValueChangingFcn Callbacks

Many components, such as sliders and text areas, have both a ValueChangedFcn callback and a
ValueChangingFcn callback. Both of these callbacks execute in response to a change in the
component value, but they execute at different times in the interaction.

• The ValueChangedFcn callback executes once after the app user finishes the interaction. For
example, the ValueChangedFcn callback of a slider executes after the user releases the slider
thumb at its final value.

• The ValueChangingFcn callback executes multiple times at regular intervals while the app user
performs the interaction. For example, the ValueChangingFcn callback of a slider executes
regularly as the user drags the slider thumb.

Using a ValueChangedFcn callback minimizes the number of times the callback function is
executed, which can make the interaction with the component feel more responsive. Consider using a
ValueChangedFcn over a ValueChangingFcn callback in these scenarios:

• There is no need to update the app until the user reaches a final value.
• Your callback function performs updates or calculations that take a long time to run.

Minimize Table Data Updates

Apps often use table UI components to store and display large amounts of data. As a result, updating
that data can be an expensive operation. Improve the performance of your app when updating table
data by minimizing the number of times you update the Data property of the Table object.

For example, to update two columns in a table UI component, use this code to modify the table Data
property in a single operation instead of using a separate operation for each column:

fig = uifigure;
data = readtable('tsunamis.xlsx');
tbl = uitable(fig,"Data",data);

newcols = tbl.Data{:,1:2} + 1;
tbl.Data{:,1:2} = newcols;

Improve App Resize Behavior
To improve the performance of resizing an app, consider using a grid layout manager instead of
setting the Position property or writing a SizeChangedFcn callback. You can add a grid layout
manager to your app by using the uigridlayout function or, in an existing app in App Designer, by
right-clicking the canvas and selecting Apply Grid Layout.

Some benefits of using a grid layout manager are:

• The app manages the resize behavior without additional resize code.
• The resize operation is applied smoothly, with all components being resized at the same time.

For more information about using a grid layout manager, see “Manage App Resize Behavior
Programmatically” on page 10-10.

 Create Responsive Apps

8-9

Improve App Responsiveness to User Input
To improve the time it takes for your app to respond after a user interacts with the app interface,
ensure that MATLAB executes your code that responds to the interaction as soon as possible.

Wait for User Input Using waitfor

To pause app execution while waiting for user input, use the waitfor function. This technique allows
your app to respond to an interaction immediately and results in more readable code.

For example, this code creates a dialog box that prompts a user to enter their name. Call the
waitfor function to block code execution until the UserData property of the button is set to
"Clicked". Then update the UserData property in the ButtonPushedFcn callback. When the user
enters their name and clicks the OK button, the code execution resumes.

fig = uifigure("Position",[500 500 300 150]);
gl = uigridlayout(fig,[3 1]);

lbl = uilabel(gl,"Text","Enter your name to continue:", ...
 "HorizontalAlignment","center");
ef = uieditfield(gl);
btn = uibutton(gl,"Text","OK","ButtonPushedFcn",@updateButton);

waitfor(btn,"UserData","Clicked");
disp("Program execution resumed")

function updateButton(src,event)
src.UserData = "Clicked";
end

Run App Calculations in the Background

When you run calculations in your app, the user interface can become unresponsive while MATLAB is
busy. For example, MATLAB will not process callbacks in response to user interaction while a
calculation is in progress. To enable your app to immediately respond to interactions even while
running calculations, use the background pool to run the calculations in the background.

For an example of how to create an app that responds to button pushes while running calculations in
the background, see “Create Responsive Apps by Running Calculations in the Background”.

For an example of how to update a wait bar while app calculations are running, see “Update Wait Bar
While Functions Run in the Background”.

8 Advanced App Designer Examples

8-10

Improve Performance of Graphics in Your App
If your app incorporates graphics, there are additional techniques that you can use to optimize
performance and responsiveness:

• Update only changed data.
• Identify bottlenecks in your code.
• Limit updates to long-running animations.
• Use built-in axes interactions, and disable the interactions that the app does not require.

To learn more, see “Improve Graphics Performance”.

See Also

Related Examples
• “Improve App Startup Time” on page 8-12
• “Techniques to Improve Performance”
• “Improve Graphics Performance”
• “Profile Your Code to Improve Performance”

 Create Responsive Apps

8-11

Improve App Startup Time
There are multiple techniques that you can use to improve the performance and responsiveness of
apps that you create. For an overview of these techniques, see “Create Responsive Apps” on page 8-8.

To improve the startup time of your app, one technique is to initialize and perform calculations for
only the parts of your app that are visible at startup. You can then use callbacks to initialize and
update other portions of the app when the app user needs to see them. Two common scenarios in
which this technique can have a significant benefit are when your app contains multiple tabs and
when your app contains a tree with many nodes.

Improve Startup Time in Apps with Multiple Tabs
In apps with multiple tabs, only the content in a single tab is visible when the app first starts up. You
can improve the startup time of your app by creating only the content in the visible tab at startup and
then populating the content in other tabs when the app user switches to them.

For example, create an app with three tabs that displays a different plot in each tab. Create a file
named tabPlotApp.m in your current folder and define a function named tabPlotApp. Within the
function, perform these steps:

1 Create a figure window with a tab group.
2 Assign a handle to a function named plotData to the SelectionChangedFcn callback property

of the tab group. This function executes when the app user navigates to a new tab.
3 Add three tabs to the tab group. Tag each tab to keep track of it, and use the UserData property

to store whether the tab content has been loaded.
4 Plot some data in the tab that is visible when the app starts up.

function tabPlotApp
fig = uifigure;
tg = uitabgroup(fig,"Position",[10 10 450 400]);
tg.SelectionChangedFcn = @plotData;

t1 = uitab(tg,"Title","Data 1","Tag","1","UserData","loaded");
t2 = uitab(tg,"Title","Data 2","Tag","2","UserData","unloaded");
t3 = uitab(tg,"Title","Data 3","Tag","3","UserData","unloaded");

ax = uiaxes(t1);
plot(ax,1:10,"b");
end

In the same file, define the plotData callback function. In the function, access the tab that the app
user switched to. If the tab content has not yet been loaded, plot some data in the tab, and then
update the UserData property of the tab to indicate that the content has been loaded.

function plotData(src,event)
t = event.NewValue;
if t.UserData == "unloaded"
 switch t.Tag
 case "2"
 ax = uiaxes(t);
 plot(ax,1:10,"r");
 case "3"
 ax = uiaxes(t);

8 Advanced App Designer Examples

8-12

 plot(ax,1:10,"g");
 end
 t.UserData = "loaded";
end
end

Run the tabPlotApp function and switch between tabs to see the loading behavior.

Improve Startup Time in Apps with Large Trees
When you create a tree UI component with many nodes, you can provide a more responsive
experience for the app user by creating child nodes only after a parent node is expanded. Do this by
writing a NodeExpandedFcn callback for the tree, and create the nodes in the callback function.

For example, create an app that displays patient names and hospitals in a tree. Create a file named
patientTreeApp.m in your current folder and define a function named patientTreeApp. Within
the function, perform these steps:

1 Read in the sample patient data and store it in a table variable named T.
2 Create a figure window, and then create a tree in the figure.
3 Populate the tree with two top-level nodes. These nodes will have child nodes with hospital

names and patient names from the data. Use the NodeData property to store whether the node
has been expanded by a user.

 Improve App Startup Time

8-13

4 For each of the top-level nodes, create one child node with the text "Loading...". This
placeholder child node allows the top-level node to be expanded by the app user. It also provides
the app user with immediate feedback when they first expand a node.

5 Assign the createNodes function to the NodeExpandedFcn callback property of the tree. Pass
the patient table data as an input to the function. MATLAB executes the createNodes function
whenever the app user expands a node of the tree.

function patientTreeApp
T = readtable("patients");

fig = uifigure;
tr = uitree(fig,"Position",[20 20 300 300]);
hospitalnode = uitreenode(tr,"Text","Hospitals","NodeData",false);
namenode = uitreenode(tr,"Text","Patient Names","NodeData",false);
for k = 1:length(tr.Children)
 node = tr.Children(k);
 uitreenode(node,"Text","Loading...");
end

tr.NodeExpandedFcn = {@createNodes,T};
end

In the same file, define the createNodes callback function. The function input arguments are the
callback source component and event data that MATLAB passes to callback functions and the patient
data. Within the function, store the node that was expanded in a variable named parent. If this is the
first time a user has expanded the node, perform these steps:

1 Delete the placeholder child node.
2 Depending on which node was expanded, store either the hospital names or the patient names in

a variable named children.
3 For each of the names stored in children, create a tree node whose text is that name, and then

parent it to the expanded node.
4 Update the NodeData property to indicate that the node has been expanded.

function createNodes(src,event,T)
parent = event.Node;
if ~parent.NodeData
 delete(parent.Children)

 switch parent.Text
 case "Hospitals"
 children = categories(categorical(T.Location));
 case "Patient Names"
 children = categories(categorical(T.LastName));
 end

 for k = 1:length(children)
 text = children{k};
 uitreenode(parent,"Text",text);
 end

 parent.NodeData = true;
end
end

Call the patientTreeApp function from the command line to run the app.

8 Advanced App Designer Examples

8-14

patientTreeApp

Expand the Hospitals and Patient Names nodes to generate and display their children.

See Also

Related Examples
• “Create Responsive Apps” on page 8-8
• “Improve Graphics Performance”
• “Techniques to Improve Performance”

 Improve App Startup Time

8-15

Find and Create UI Components and Charts
MATLAB provides a large set of UI components on page 4-2 and plot types for you to use when
creating apps. To expand this set, users can create and share their own custom UI components and
charts. If you are looking for additional UI components and charts, you can explore and download
community-authored content on File Exchange at MATLAB Central. In addition, you can create your
own specialized UI components and charts and share them with others.

Find Community-Authored Components and Charts
In addition to the existing UI components and charts and the examples provided in the
documentation, you can find a variety of community-authored content on File Exchange at MATLAB
Central. Select an entry to view additional information about the content, such as what files it
includes and what documentation is available. To use a community-authored UI component or chart
in your app, download the content and add it to a folder on your MATLAB search path.

Link Options for Use in Apps
Community-authored custom UI components • Add the UI component to your app

interactively from the App Designer
Component Library.

• Add the UI component to your app
programmatically by creating it in your app
code.

Community-authored custom charts • Add the chart to your app programmatically
by creating it in your app code.

Create Your Own Components and Charts
MATLAB provides the ability to extend the list of available components by creating custom UI
components and charts, and by embedding third-party content in your apps.

Create Custom UI Components

Create your own UI components to use in your apps or to share with others. You can use custom UI
components to extend existing UI component functionality, to break up large apps into independent
and maintainable pieces, and to design an interface for users to customize and reuse a component
across multiple apps. For more information, see “Create a Simple Custom UI Component in App
Designer” on page 13-2.

Create Custom Chart Classes

Develop your own chart class to extend existing chart functionality and to reuse and share a custom
chart across multiple apps. Define a chart class by creating a subclass of the ChartContainer base
class, and then programmatically create an instance of the chart in your app code. For more
information, see “Chart Development Overview”.

Interface with Third-Party Libraries

Create an HTML UI component to embed HTML, JavaScript, or CSS content in your app. You can use
the component to interface with third-party libraries to display content like widgets or data

8 Advanced App Designer Examples

8-16

https://www.mathworks.com/matlabcentral/fileexchange/?term=tag:%22componentcontainer%22
https://www.mathworks.com/matlabcentral/fileexchange/?term=tag:%22chartcontainer%22

visualizations. For more information, see “Create HTML File That Can Trigger or Respond to Data
Changes” on page 4-23.

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer |
matlab.graphics.chartcontainer.ChartContainer

Functions
uihtml

Related Examples
• “Configure Custom UI Components for App Designer” on page 12-17
• “Display HTML Elements Styled by a Cascading Style Sheet” on page 7-15

 Find and Create UI Components and Charts

8-17

Keyboard Shortcuts

9

App Designer Keyboard Shortcuts

In this section...
“Shortcuts Available Throughout App Designer” on page 9-2
“Component Browser Shortcuts” on page 9-2
“Design View Shortcuts” on page 9-3
“Code View Shortcuts” on page 9-7

Shortcuts Available Throughout App Designer
Action Keys
Run the active app. F5
Save the active app. Ctrl+S
Save the active app, allowing you to specify a
new file name. (Save as)

Ctrl+Shift+S

Open a previously saved app. Ctrl+O
Open a new blank app. Ctrl+N
Redo an undone modification, returning it to the
changed state.

Ctrl+Y or, in the design area only, Ctrl+Shift+Z

Undo a modification, returning it to the previous
state.

Ctrl+Z

Alternate between design and code view. Shift+F7

If debugging is in progress, this shortcut does not
change the view.

Close the active app. Ctrl+W
Quit App Designer. Ctrl+Q

Component Browser Shortcuts
These shortcuts are available in the Component Browser, in both code view and design view

Action Keys
Select multiple components. Hold down the Ctrl key as you click each

component that you want to include in the
multiselection.

Deselect a component from multiselection. Hold down the Ctrl key as you click each
component that you want to remove from a
multiselection.

Navigate from clicked component to the previous
or next component listed in the code browser.

Up Arrow and Down Arrow

9 Keyboard Shortcuts

9-2

Action Keys
Edit code name of clicked component in the code
browser.

F2 on Windows® and Linux®

Enter on Mac

Design View Shortcuts
These shortcuts are available from the App Designer design view only.

• “Add Component Shortcuts” on page 9-3
• “Component, Group, and Text Selection Shortcuts” on page 9-3
• “Group and Ungroup Components Shortcuts” on page 9-4
• “Component and Group Move Shortcuts” on page 9-4
• “Component Resize Shortcuts” on page 9-4
• “Component Copy, Duplicate, and Delete Shortcuts” on page 9-5
• “Design Area Grid Shortcuts” on page 9-5
• “Component Alignment Shortcuts” on page 9-5
• “Change Font Characteristics Shortcuts” on page 9-6
• “Menu Component Shortcuts” on page 9-6
• “Tab Component Shortcuts” on page 9-6
• “Navigate Canvas Shortcuts” on page 9-7

Add Component Shortcuts

Action Shortcut
Add component and associated label (if any) to
canvas.

Click the component and hold down the mouse
key to drag the component from the Component
Library on the left into the design area.

Add component only to canvas. Hold down the Ctrl key, click the component, and
drag it from the Component Library on the left
into the design area.

Component, Group, and Text Selection Shortcuts

Action Keys
Move the selection to the next component, or
container in the design area tab key navigation
sequence.

Tab

Move the selection to the previous component or
container in the design area tab key navigation
sequence.

Shift+Tab

Selects all components on the canvas, with one
exception. If any of the components are grouped,
the group is selected, not the individual
components within the grouping.

Ctrl+A

 App Designer Keyboard Shortcuts

9-3

Action Keys
Clear a component selection. Press again to
reselect the component.

Shift+Click or Ctrl+Click

In the property editor or in-place editing, select
all text in a text input field.

Ctrl+A

Select group containing a component. Alt+Click a component

Group and Ungroup Components Shortcuts

Select the components that you want to group, and then press Ctrl+G. All components to be grouped
must have the same parent component.

Action Keys
Group selected components. Ctrl+G
Ungroup components in selected group. Ctrl+Shift+G

Component and Group Move Shortcuts

This table summarizes the keyboard shortcuts for moving selected components and groups.

Action Keys
Move down 1 pixel. Down Arrow
Move left 1 pixel. Left Arrow
Move right 1 pixel. Right Arrow
Move up 1 pixel. Up Arrow
Move down 10 pixels. Shift+Down Arrow
Move left 10 pixels. Shift+Left Arrow
Move right 10 pixels. Shift+Right Arrow
Move up 10 pixels. Shift+Up Arrow
Cancel an in-progress operation. Escape

Component Resize Shortcuts

Action Keys
Resize component while maintaining aspect ratio. Press and hold down the Shift key before you

begin to drag the component resize handle.
Resize component while keeping center location
unchanged.

Press and hold down the Ctrl key before you
begin to drag the component resize handle.

Resize component while maintaining aspect ratio
and keeping center location unchanged.

Press and hold down the Ctrl and Shift keys
before you begin to drag the component resize
handle.

Cancel an in-progress resize operation. Escape

9 Keyboard Shortcuts

9-4

Component Copy, Duplicate, and Delete Shortcuts

Action Keys
Copy selected components and groups to the
clipboard.

Ctrl+C

Duplicate the selected components and groups
(without copying them to the clipboard).

Ctrl+D, or hold down the Ctrl key and drag the
component.

Cut the selected components and groups from the
design area onto the clipboard.

Ctrl+X

Delete the selected components and groups from
the design area.

Backspace or Delete

Paste components and groups from the clipboard
into the design area or a container component
(panel, tab, or button group). Radio buttons and
toggle buttons can only be pasted into radio
button groups or toggle button groups,
respectively.

Ctrl+V

Design Area Grid Shortcuts

Action Keys
Toggle grid on and off. Alt+G
Toggle snap to grid on and off. Alt+P
Increase grid interval by 5 pixels. Alt+Page Up
Decrease grid interval by 5 pixels. Alt+Page Down

Component Alignment Shortcuts

Action Keys
Align selected components and groups on their
left edges.

Ctrl+Alt+1

Align selected components and groups on their
horizontal centers.

Ctrl+Alt+2

Align selected components and groups on their
right edges.

Ctrl+Alt+3

Align selected components and groups on their
top edges.

Ctrl+Alt+4

Align selected components and groups on their
vertical middle.

Ctrl+Alt+5

Align selected components and groups on their
bottom edges.

Ctrl+Alt+6

 App Designer Keyboard Shortcuts

9-5

Change Font Characteristics Shortcuts

Action Keys
Toggle the font weight of selected components
and their children between normal and bold.

Ctrl+B

Toggle the font angle of selected components and
their children between normal and italic.

Ctrl+I

Decrease the value of the FontSize property of
the selected components and their children by
one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16, 18,
20, 22, 24, 26, 28, 36, 48, 72.

Ctrl+[

Increase the value of the FontSize property of
the selected components and their children by
one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16, 18,
20, 22, 24, 26, 28, 36, 48, 72.

Ctrl+]

Menu Component Shortcuts

Action Keys
Add a menu item below the current item. The
new menu item appears at the end of the list.

Enter

Add an item to the right of selected item. Shift+Enter
Delete the current item. Delete
Commit text changes and navigate to the next
item.

Any Arrow key

Select the first or last item at the level of the
selected item.

Home
End

Move the selected child menu item higher or
lower in the list.

Ctrl+Shift+Up Arrow
Ctrl+Shift+Down Arrow

Move the selected top-level menu item to the left
or right.

Ctrl+Shift+Left Arrow
Ctrl+Shift+Right Arrow

Move the selected item to the beginning or end of
the list.

Ctrl+Shift+Home
Ctrl+Shift+End

Tab Component Shortcuts

Action Keys
Move the selected tab to the left or right. Ctrl+Shift+Left Arrow

Ctrl+Shift+Right Arrow
Move the selected tab to the beginning or end. Ctrl+Shift+Home

Ctrl+Shift+End

9 Keyboard Shortcuts

9-6

Navigate Canvas Shortcuts

Action Keys
Zoom in on the canvas. Ctrl+Plus (+)
Zoom out on the canvas. Ctrl+Minus (-)
Reset the canvas zoom to default. Ctrl+Alt+0
Zoom to fit the canvas to the view. Space
Pan on the canvas. Click and drag with the middle mouse button, or

hold Space while clicking and dragging with the
left mouse button.

Code View Shortcuts
These shortcuts are available only from the App Designer code view, within the editor.

• “Code Indenting Shortcuts” on page 9-7
• “Code Folding Shortcuts” on page 9-7
• “Cut, Copy, and Paste Code Shortcuts” on page 9-8
• “Find Code Shortcuts” on page 9-8
• “Code Browser Shortcuts” on page 9-8
• “Code View Zoom Shortcuts” on page 9-8
• “Comment Shortcuts” on page 9-8
• “Bookmark Shortcuts” on page 9-8
• “Debugging Shortcuts” on page 9-9
• “Other App Designer Code Editor Shortcuts” on page 9-9

Code Indenting Shortcuts

Action Keys
Smart indent selected code. Ctrl+I
Increase indent on current line of code or
currently selected code.

Ctrl+]

Decrease indent on current line of code or
currently selected code.

Ctrl+[

Code Folding Shortcuts

Action Keys
Collapse code section containing selected code. Ctrl+Period (.)
Expand code section containing selected code. Ctrl+Shift+Period (.)
Collapse all code sections. Ctrl+Comma (,)
Expand all code sections. Ctrl+Shift+Comma (,)

 App Designer Keyboard Shortcuts

9-7

Cut, Copy, and Paste Code Shortcuts

Action Keys
Cut selected code. Ctrl+X
Copy selected code. Ctrl+C
Paste selected code. Ctrl+V
Duplicate selected lines. Ctrl+Shift+C

Find Code Shortcuts

Action Keys
Find. Ctrl+F
Find next. F3
Find previous. Shift+F3
Find selection. Ctrl+F3

Code Browser Shortcuts

Action Keys
Delete callback. Delete
Rename callback. F2
Bring callback to focus and insert cursor. Ctrl+D

Code View Zoom Shortcuts

Action Keys
Zoom in on code editor. Ctrl+Plus (+)
Zoom out on code editor. Ctrl+Minus (-)
Reset code editor zoom to default. Ctrl+Alt+0

Comment Shortcuts

Action Keys
Add comment to selected code. Ctrl+R
Remove comment from selected code. Ctrl+T
Wrap selected comments. Ctrl+J

Bookmark Shortcuts

Action Keys
Set or clear bookmark. Ctrl+F2
Navigate to next bookmark. F2
Navigate to previous bookmark. Shift+F2

9 Keyboard Shortcuts

9-8

Debugging Shortcuts

Action Keys
Set or clear breakpoint. F12
Continue running to next breakpoint. F5
Run next line ("step"). F10
Run next line and step into function ("step in"). F11
Run until current function returns ("step out"). Shift+F11
Stop execution. Shift+F5

Other App Designer Code Editor Shortcuts

Action Keys
Convert selected code to uppercase or lowercase. Ctrl+Shift+A
Print code. Ctrl+P
Insert section break. Ctrl+Alt+Enter
Evaluate selection. F9
Open selection. Ctrl+D
Go to specified line number. Ctrl+G

 App Designer Keyboard Shortcuts

9-9

Create UIs Programmatically
• “Lay Out Apps Programmatically” on page 10-2
• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Create and Run a Simple Programmatic App” on page 15-2
• “Callbacks for Specific Components” on page 19-14
• “Share Data Among Callbacks” on page 11-9

11

Lay Out a Programmatic UI

• “Lay Out Apps Programmatically” on page 10-2
• “Manage App Resize Behavior Programmatically” on page 10-10
• “DPI-Aware Behavior in MATLAB” on page 10-17

10

Lay Out Apps Programmatically
An app consists of a figure and one or more UI components that you place inside the figure. MATLAB
app building tools provide many options for managing the layout of an app programmatically. For
example, you can write code to specify the size and location of the figure and its components, align
components with respect to one another, and specify the front-to-back component order.

Manage Figure Size and Location
A figure serves as the top-level container for every app. Use the uifigure function to create a figure
configured for app building.

Update the size and the location of the figure on the app user's display by setting the Position
property of the figure. Specify Position as a four-element vector in this form:

[left bottom width height]

Each element in the vector represents a distance, in pixels, that excludes the figure borders and title
bar. This table describes each element.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the figure window
bottom Distance from the bottom edge of the primary display to the inner

bottom edge of the figure window
width Distance between the right inner and left inner edges of the figure
height Distance between the top inner and bottom inner edges of the

figure

For example, this code creates a figure window that is 100 pixels from the bottom edge and 200
pixels from the left edge of the primary display, and that is 400 pixels wide and 300 pixels tall,
excluding the figure borders and title bar.

fig = uifigure;
fig.Position = [100 200 400 300];

10 Lay Out a Programmatic UI

10-2

To position a figure window in a specific location on an app user's screen, independent of the user's
display size, use the movegui function. Specify the figure and the display location. For example, this
code moves the figure window to the center of the app user's primary display.

movegui(fig,'center');

Lay Out UI Components
To design the visual appearance of your app, set the size and location of the UI components within
the figure window. Lay out the components using one of these methods:

• “Use a Grid Layout Manager” on page 10-3 — Align your UI components with respect to one
another, and allow the app to manage how your components resize. This method is recommended
for most app building purposes.

• “Specify the Position Property” on page 10-6 — Manually position your components in the initial
app layout. This method is useful when you want to specify custom resize behavior outside of the
options of a grid layout manager.

Use a Grid Layout Manager

A grid layout manager is a container that lets you lay out UI components in rows and columns. Create
a grid layout manager for your app using the uigridlayout function, and parent the grid layout

 Lay Out Apps Programmatically

10-3

manager to the main figure window. You can manage the size and configuration of the grid by setting
properties of the GridLayout object. Add components to the grid by parenting them to the grid
layout manager, and specify the row and column of each component by setting its Layout property.

For example, use a grid layout manager to lay out an app that contains a button, a spinner, and a text
area. Give the button a fixed size, but let the other components stretch to fill the extra horizontal
space. Also, center the components vertically by adding empty rows above and below them that can
expand to fill the extra vertical space.

To accomplish this, create a grid with four rows and two columns by passing [4 2] as the second
input to uigridlayout.

fig = uifigure;
fig.Position(3:4) = [300 300];
gl = uigridlayout(fig,[4 2]);

Then, create the UI components and parent them to the grid layout manager. Lay out the components
using the Layout.Row and Layout.Column properties.

Position the button and the spinner next to each other by adding them to the second row.

btn = uibutton(gl);
btn.Layout.Row = 2;
btn.Layout.Column = 1;

spn = uispinner(gl);
spn.Layout.Row = 2;
spn.Layout.Column = 2;

Position the text area underneath by adding it to the third row. Lay out the text area to span both the
first and second column of the grid by setting its Layout.Column property to [1 2].

ta = uitextarea(gl);
ta.Layout.Row = 3;
ta.Layout.Column = [1 2];

10 Lay Out a Programmatic UI

10-4

When you create a grid layout manager, by default, each row has the same height and each column
has the same width. Resize and reposition the UI components by setting the RowHeight and
ColumnWidth properties of the grid layout manager.

Set the height of the second row to automatically scale to fit its contents, and the height of the third
row to be fixed at 100 pixels. Set the heights of the first and fourth rows to '1x'. This specifies that
the top and bottom rows have the same height and expand to fill the remaining vertical space, which
ensures the components are centered in the figure window.

gl.RowHeight = {'1x','fit',100,'1x'};

Set the width of the first column to automatically scale to fit its contents. This resizes the width of the
button to fit the length of its text. Set the width of the second column to '1x' to fill the remaining
horizontal space.

gl.ColumnWidth = {'fit','1x'};

 Lay Out Apps Programmatically

10-5

An additional benefit of using a grid layout manager is that you can use the ColumnWidth and
RowHeight properties to manage how the UI components in your app resize when the app user
resizes the figure window. For more information, see “Manage App Resize Behavior
Programmatically” on page 10-10.

Specify the Position Property

Alternatively, you can manually position the UI components in you app. Every UI component has a
Position property. Use this property to control the size and location of the component in the figure
window. Specify the value of Position as a four-element vector of the form [left bottom width
height].

For example, use the Position property to lay out an app that contains a button, a spinner, and a
text area. Align the button and the spinner horizontally by specifying that they have the same
distance from the bottom edge of the figure and the same height. Position the text area below the
button and slider, and set its width to span the width the two components above.

fig = uifigure;
fig.Position(3:4) = [300 300];

btn = uibutton(fig);
btn.Position = [10 195 45 22];

spn = uispinner(fig);
spn.Position = [65 195 225 22];

ta = uitextarea(fig);
ta.Position = [10 85 280 100];

10 Lay Out a Programmatic UI

10-6

The position of a UI component is calculated relative to the immediate parent of the component. For
instance, if you create a label inside a panel, the values of left and bottom in the position vector of
the Label object indicate the distance from the left and bottom edges of the panel, not the figure
window.

Change Front-to-Back Component Order
The stacking order of UI components determines which components appear in front of other
overlapping components in an app. The default stacking order of components is as follows:

• UI components and containers appear in the order in which you create them. New components
appear in front of existing components.

• Axes and other graphics objects appear behind UI components and containers.

An exception to this default order is for tabs within tab groups. The first tab created in a tab group
appears on top of the other tabs.

For example, this code creates three overlapping images in a figure. The image created first is on the
bottom, and the image created last is on top.

fig = uifigure;
fig.Position = [100 100 350 300];

peppers = uiimage(fig);
peppers.ImageSource = "peppers.png";

street = uiimage(fig);
street.ImageSource = "street1.jpg";
street.Position(1:2) = [130 150];

nebula = uiimage(fig);

 Lay Out Apps Programmatically

10-7

nebula.ImageSource = "ngc6543a.jpg";
nebula.Position(1:2) = [150 80];

To modify the stacking order in your app, use the Children property. Figure objects and other app
containers such as Panel, ButtonGroup, GridLayout, TabGroup, and Tab objects have a
Children property. This property lists the child objects inside the container according to their
stacking order. For most containers, the front-most object is listed first. The exceptions to this are
GridLayout, where the back-most object is listed first, and TabGroup, where the left-most tab is
listed first. To change the stacking order inside a container, change the order of components in its
Children property.

For example, rearrange the stacking order of the images by setting the Children property of the
figure to the new front-to-back image order.

fig.Children = [street nebula peppers];

10 Lay Out a Programmatic UI

10-8

There are some restrictions on stacking order. Axes and other graphics objects can stack in any order.
However, axes and other graphics objects always appear behind UI components and containers.

You can work around this restriction by parenting graphics objects to separate containers. Then, you
can stack those containers in any order. To parent a graphics object to a container, set its Parent
property to be that container. For example, you can parent an Axes object to a panel by setting the
Parent property of the Axes to be the panel.

See Also

Related Examples
• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Manage App Resize Behavior Programmatically” on page 10-10
• “Lay Out Apps in App Designer Design View” on page 5-2

 Lay Out Apps Programmatically

10-9

Manage App Resize Behavior Programmatically
Apps created using the uifigure function are resizable by default. The components reposition and
resize automatically as the app user changes the size of the window at run-time.

If you want more flexibility over how your app resizes, use one of these methods:

• “Use a Grid Layout Manager” on page 10-10 — Add components to a grid, and specify how the
rows and columns of the grid resize.

• “Write Code to Manage Resize Behavior” on page 10-12 — Write a SizeChangedFcn callback
that resizes UI components. The callback executes whenever the figure window size changes.

• “Turn Off Resizing of Specific Components” on page 10-15 — Specify the AutoResizeChildren
property of specific containers in your app.

• “Turn Off App Resizing Entirely” on page 10-16 — Set the Resize property of the figure to
'off'.

Use a Grid Layout Manager
A grid layout manager is a container that allows you to lay out UI components in a grid. You can
configure grid layout managers to specify the initial layout and resize behavior of the components in
the grid.

Create a grid layout manager in a UI figure window by calling the uigridlayout function and
specifying the figure as the first argument. Set the RowHeight and ColumnWidth properties of the
grid layout manager to specify how each row and column behaves when the app user resizes the
figure window. Specify RowHeight and ColumnWidth as a cell array with one value for each row or
column. There are three different types of row heights and column widths:

• Fit size — Specify 'fit'. The row height or column width is fixed to automatically fit its contents.
The dimension does not change when the app is resized.

• Fixed size — Specify a number in pixels. The row height or column width is fixed at the number of
pixels you specify. The dimension does not changed when the app is resized.

• Variable size — Specify a number paired with an 'x' character (for example, '1x'). Variable-
height rows fill the remaining vertical space that the fixed-height rows do not use, and variable-
width columns fill the remaining horizontal space that fixed-width rows do not use. The number
you pair with the 'x' character is a weight for dividing up the remaining space, where the
amount of space is proportional to the number. For instance, if one row has a width of '2x' and
another has a width of '1x', the first row grows or shrinks twice as much as the second when the
app is resized.

For example, this code creates a grid layout manager with four rows. The height of the first row is
sized to fit its content, the second row is fixed at 200 pixels, and the last two rows share the
remaining vertical space unequally. The third row uses twice as much space as the fourth row.

fig = uifigure;
gl = uigridlayout(fig,[4 1]);
gl.RowHeight = {'fit',200,'2x','1x'};

For more information about laying out apps using a grid layout manager, see “Lay Out Apps
Programmatically” on page 10-2.

10 Lay Out a Programmatic UI

10-10

Example: Resizable App Using a Grid Layout Manager

This example demonstrates how to configure a grid layout manager to specify app resize behavior.
The app contains a drop-down, a list box, and a table with some data. Create a UI figure window with
a 3-by-2 grid layout. Then, create the UI components and add them to the grid layout by specifying
the Layout.Row and Layout.Column properties.

fig = uifigure;
gl = uigridlayout(fig,[3 2]);

dd = uidropdown(gl);
dd.Layout.Row = 1;
dd.Layout.Column = 1;

lb = uilistbox(gl);
lb.Layout.Row = 2;
lb.Layout.Column = 1;

tbl = uitable(gl);
tbl.Data = rand(100);
tbl.Layout.Row = [1 3];
tbl.Layout.Column = 2;

Configure the app layout and resize behavior by setting the RowHeight and ColumnWidth properties
of the grid layout manager:

• Specify 'fit' for the first row. This automatically adjusts the row height to fit the height of the
drop-down.

• Specify a height of 80 pixels for the second row. This fixes the list box height when the app is
resized.

• Specify a height of '1x' for the third row. This fills the remaining vertical space.
• Specify a width of '1x' for the first column and '2x' for the second. This ensures that all

components resize horizontally, and the table always occupies twice as much horizontal space as
the other components.

gl.RowHeight = {'fit',80,'1x'};
gl.ColumnWidth = {'1x','2x'};

 Manage App Resize Behavior Programmatically

10-11

Resize the figure window by dragging one of the window corners. The UI components resize
according to the grid layout specifications.

Write Code to Manage Resize Behavior
When you wish to provide resize behavior that the grid layout manager does not support, consider
managing your app layout using SizeChangedFcn callbacks. For example, use this method if you
want to:

10 Lay Out a Programmatic UI

10-12

• Resize a component up to a minimum or maximum size that you define.
• Implement non-linear resize behaviors.

To specify resize behavior in this way, follow these steps:

1 Write callback functions for each container in your app to manage the layout of its children when
the window size changes.

2 Set the AutoResizeChildren property of each container to 'off'.
3 Set the SizeChangedFcn property of each container to a handle to the appropriate callback

function.

It is a good practice to put all the layout code for each container inside the SizeChangedFcn
callback to ensure the most accurate results.

The SizeChangedFcn callback executes when one of these happens:

• The container becomes visible for the first time.
• The container is visible while its size changes.
• The container becomes visible for the first time after its size changes. This occurs when the size

changes while the container is invisible, and then it becomes visible later.

Tip It is a good practice to delay the display of the container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn callback from
returning an error. To delay the display of the container, set its Visible property to 'off'. Then, set
the Visible property to 'on' after you define the variables that your SizeChangedFcn callback
uses.

Example: Resizable App Using SizeChangedFcn

This example demonstrates how to create an app that uses custom resize logic to manage the size of
toggle buttons within a button group, and to fix the aspect ratio of a set of axes. Create a file named
sizeChangedApp.m in your current folder, and define the main sizeChangedApp function at the
top of the file.

Write a helper function named createComponents to create the figure and UI components, and
store the UI components in the UserData of the figure. This allows you to access your app data
within the figure SizeChangedFcn callback function. For more information about sharing app data,
see “Share Data Among Callbacks” on page 11-9.

Call the createComponents function in your main app function, and then make the figure window
visible.

function sizeChangedApp
 fig = createComponents;
 fig.Visible = 'on';
end

% Create UI components
function fig = createComponents
 fig = uifigure('Visible','off', ...
 'AutoResizeChildren','off', ...
 'SizeChangedFcn',@figResize);

 Manage App Resize Behavior Programmatically

10-13

 btngrp = uibuttongroup(fig, ...
 'AutoResizeChildren','off', ...
 'SizeChangedFcn',@bgResize);
 btn1 = uitogglebutton(btngrp);
 btn2 = uitogglebutton(btngrp);
 ax = uiaxes(fig);

 % Store components
 fig.UserData = struct(...
 'ButtonGroup',btngrp, ...
 'Button1',btn1, ...
 'Button2',btn2, ...
 'Axes',ax);
end

Then, write one SizeChangedFcn resize function for the figure window and another one for the
button group. Each function manages the resize behavior of its immediate children.

For the figure window, write a callback named figResize to manage the location and size of the
ButtonGroup and Axes objects whenever the user resizes the window:

• Position the button group to span the entire left half of the figure.
• Position the axes to maintain a square aspect ratio and a position in the center of the right half of

the figure:

• Set the width and height of the Axes object to be the same, with the number of pixels given by
axdim. The value of axdim is the value that fills the right half of the figure to its fullest,
allowing for 10 pixels of space on each size of the axes and subject to the constraint that the
axes remains square. The command axdim = max(axdim,0) ensures the dimensions of the
axes are never negative.

• Set the left edge of the axes, axleft, so that the axes is horizontally centered in the right half
of the figure.

• Set the bottom edge of the axes, axbottom, so that the axes is vertically centered in the figure.

function figResize(src,event)
 % Get UserData to access components
 data = src.UserData;

 % Get figure size
 figwidth = src.Position(3);
 figheight = src.Position(4);

 % Resize button group
 data.ButtonGroup.Position = [1 1 figwidth/2 figheight];

 % Resize axes
 axdim = min(figwidth/2,figheight) - 20;
 axdim = max(axdim,0);
 axleft = figwidth/2 + (figwidth/2-axdim)/2;
 axbottom = (figheight-axdim)/2;
 data.Axes.Position = [axleft axbottom axdim axdim];
end

For the button group, write a callback named bgResize to manage the location and size of the
ToggleButton objects. This callback is executed whenever the ButtonGroup object changes size,

10 Lay Out a Programmatic UI

10-14

which occurs whenever the user resizes the figure window. In this function, position the two toggle
buttons relative to the size of the ButtonGroup object:

• Set the left edge and width of each toggle button, btnleft and btnwidth, to allow for 20 pixels
of space between the button edges and the container edges on both the left and the right side.

• Set the height of each toggle button, btnheight, to 1/6 the height of the button group.
• Set the bottom of each toggle button, btn1bottom and btn2bottom, so that the space above the

top button and below the bottom button is 1/4 the height of the button group.

This is the code for the app:

function bgResize(src,event)
 % Get UserData to access components
 fig = ancestor(src,'figure','toplevel');
 data = fig.UserData;

 % Get button group size
 bgwidth = src.Position(3);
 bgheight = src.Position(4);

 % Resize button group
 btnleft = 20;
 btn1bottom = bgheight/4;
 btn2bottom = (7/12)*bgheight;
 btnwidth = bgwidth-40;
 btnheight = bgheight/6;
 data.Button1.Position = [btnleft btn1bottom btnwidth btnheight];
 data.Button2.Position = [btnleft btn2bottom btnwidth btnheight];
end

Run the app, and then resize the figure window. The components in the app resize relative to the size
of the figure window.

sizeChangedApp

Turn Off Resizing of Specific Components
The AutoResizeChildren property controls automatic resize behavior for apps without a grid
layout manager or a SizeChangedFcn callback. Every app container, such as a UI figure, panel, or
tab, has an AutoResizeChildren property, which is set to 'on' by default. When a container has
AutoResizeChildren set to 'on', the app automatically resizes the children of that container when

 Manage App Resize Behavior Programmatically

10-15

the app user resizes the figure window. Use this property to selectively turn off resizing for specific
components:

• To turn off automatic resizing entirely, set AutoResizeChildren of the main figure window to
'off'.

• To turn off automatic resizing for specific components, parent those components to a container
with AutoResizeChildren set to 'off'.

When you change the AutoResizeChildren property of both a parent container and one of its
children, first set the value for the parent container, then set it for the child container.

Turn Off App Resizing Entirely
The Resize property of a figure window controls whether the app user can interactively resize the
window. The default value of Resize is 'on'. Consider setting Resize to 'off' if a consistent
window size is important to the layout or behavior of your app.

See Also
uifigure | uigridlayout

Related Examples
• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Lay Out Apps Programmatically” on page 10-2
• “Manage Resizable Apps in App Designer” on page 5-11

10 Lay Out a Programmatic UI

10-16

DPI-Aware Behavior in MATLAB
In this section...
“Visual Appearance” on page 10-17
“Using Object Properties” on page 10-19
“Using print, getframe, and publish Functions” on page 10-20

Starting in R2015b, MATLAB is DPI-aware, which means that it takes advantage of your full system
resolution to draw graphical elements (fonts, UIs, and graphics). Graphical elements appear sharp
and consistent in size on these high-DPI systems:

• Windows systems in which the display dots-per-inch (DPI) value is set higher than 96
• Macintosh systems with Apple Retina displays

DPI-aware behavior does not apply to Linux systems.

Previously, MATLAB allowed some operating systems to scale graphical elements. That scaling helped
to maintain consistent appearance and functionality, but it also introduced undesirable effects.
Graphical elements often looked blurry, and the size of those elements was sometimes inconsistent.

Visual Appearance
Here are the visual effects you might notice on high-DPI systems:

• The MATLAB desktop, graphics, fonts, and most UI components look sharp and render with full
graphical detail on Macintosh and Windows systems.

 DPI-Aware Behavior in MATLAB

10-17

• When you create a graphics or UI object, and specify the Units as 'pixels', the size of that
object is now consistent with the size of other objects. For example, the size of a push button
(specified in pixels) is now consistent with the size of the text on that push button (specified in
points).

• Elements in the MATLAB Toolstrip look sharper than in previous releases. However, icons in the
Toolstrip might still look slightly blurry on some systems.

• On Windows systems, the MATLAB Toolstrip might appear larger than in previous releases.
• On Windows systems, the size of the Command Window fonts and Editor fonts might be larger

than in previous releases. In particular, you might see a difference if you have nondefault font
sizes selected in MATLAB preferences. You might need to adjust those font sizes to make them
look smaller.

• You might see differences on multiple-display systems that include a combination of different
displays (for example, some, but not all of the displays are high-DPI). Graphical elements might
look different across displays on those systems.

10 Lay Out a Programmatic UI

10-18

Using Object Properties
These changes to object properties minimize the impact on your existing code and allow MATLAB to
use the full display resolution when rendering graphical elements. All UIs you create in MATLAB are
automatically DPI-aware applications.

Units Property

When you set the Units property of a graphics or UI object to 'pixels', the size of each pixel is
now device-independent on Windows and Macintosh systems:

• On Windows systems, 1 pixel = 1/96 inch.
• On Macintosh systems, 1 pixel = 1/72 inch.
• On Linux systems, the size of a pixel is determined by the display DPI.

Your existing graphics and UI code will continue to function properly with the new pixel size. Keep in
mind that specifying (or querying) the size and location of an object in pixels might not correspond to
the actual pixels on your screen.

For example, each screen pixel on a 192-DPI Windows system is 1/192nd of an inch. In this case,
twice as many screen pixels cover the same linear distance as the device-independent pixels do. If
you create a figure, and specify its size to be 500-by-400 pixels, MATLAB reports the size to be 500-
by-400 in the Position property. However, the display uses 1000-by-800 screen pixels to cover the
same graphical region.

Note Starting in R2015b, MATLAB might report the size and location of objects as fractional values
(in pixel units) more frequently than in previous releases. For example, your code might report
fractional values in the Position property of a figure, whereas previous releases reported whole
numbers for that same figure.

Root ScreenSize Property

The ScreenSize property of the root object might not match the display size reported by high-DPI
Windows systems. Specifically, the values do not match when the Units property of the root object is
set to 'pixels'. MATLAB reports the value of the ScreenSize property based on device-
independent pixels, not the size of the actual pixels on the screen.

Root ScreenPixelsPerInch Property

The ScreenPixelsPerInch property became a read-only property in R2015b. If you want to change
the size of text and other elements on the screen, adjust your operating system settings.

Also, you cannot set or query the default value of the ScreenPixelsPerInch property. These
commands now return an error:

get(groot,'DefaultRootScreenPixelsPerInch')
set(groot,'DefaultRootScreenPixelsPerInch')

The factory value cannot be queried either. This command returns an error as well:

get(groot,'FactoryRootScreenPixelsPerInch')

 DPI-Aware Behavior in MATLAB

10-19

Using print, getframe, and publish Functions
getframe and print Functions

When using the getframe function (or the print function with the -r0 option) on a high-DPI
system, the size of the image data array that MATLAB returns is larger than in previous releases.
Additionally, the number of elements in the array might not match the figure size in pixel units.
MATLAB reports the figure size based on device-independent pixels. However, the size of the array is
based on the display DPI.

publish Function

When publishing documents on a high-DPI system, the images saved to disk are larger than in
previous releases or on other systems.

See Also
Root | Figure

10 Lay Out a Programmatic UI

10-20

Create and Manage Callbacks
Programmatically

• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Share Data Among Callbacks” on page 11-9
• “Interrupt Callback Execution” on page 11-15

11

Write Callbacks for Apps Created Programmatically
In this section...
“Callback Function Arguments” on page 11-2
“Specify a Callback Function” on page 11-3

To program a UI component in your app to respond to an app user's input, create a callback function
for that UI component. A callback function is a function that executes in response to a user
interaction, such as a click on a button. Every UI component has multiple callback properties, each of
which corresponds to a specific action. When a user runs your app and performs one of these actions,
MATLAB executes the function assigned to the associated callback property.

For example, if your app contains a button, you might want to make the app update when a user
clicks that button. You can do this by writing a function that performs the update, then setting the
ButtonPushedFcn property of the button to a handle to your function. You can assign a callback
function to a callback property as a name-value argument when you create the component, or you can
set the property using dot notation from anywhere in your code.

To determine the callback properties a UI component has, see the properties page of the specific UI
component.

Callback Function Arguments
When a UI component executes a callback function, MATLAB automatically passes two input
arguments to the function. These input arguments are often named src and event. The first
argument is the UI component that triggered the callback. The second argument provides event data
to the callback function. The event data that it provides is specific to the callback property and the
component type. To determine the event data associated with a callback property, see the properties
page of the UI component that executes the callback.

For example, the updateDropDown function uses these callback inputs to add items to an editable
drop-down menu when the user types a new value. When the drop-down executes the addItems
callback, src contains the drop-down component, and event contains information about the
interaction. The function uses the event.Edited property to check if the value is a new value that
the user typed, or an existing item. Then, if the value is new, the function uses the event.Value
property to add the value to the drop-down items.

To run this function, save it to a file named updateDropDown.m on the MATLAB path. Type a new
value in the drop-down menu, press Enter, and view the updated drop-down items.

function updateDropDown
 fig = uifigure('Position',[500 500 300 200]);
 dd = uidropdown(fig, ...
 'Editable','on', ...
 'Items',{'Red','Green','Blue'}, ...
 'ValueChangedFcn',@addItems);
end

function addItems(src,event)
 val = event.Value;
 if event.Edited
 src.Items{end+1} = val;

11 Create and Manage Callbacks Programmatically

11-2

 end
end

Specify a Callback Function
Assign a callback function to a callback property in one of the following ways:

• “Specify a Function Handle” on page 11-3 — Use this method when your callback does not
require additional input arguments.

• “Specify a Cell Array” on page 11-4 — Use this method when your callback requires additional
input arguments. The cell array contains a function handle as the first element, followed by any
input arguments you want to use in the function.

• “Specify an Anonymous Function” on page 11-5 — Use this method when your callback code is
simple, or to reuse a function that is not always executed as a callback.

• “Specify Text Containing MATLAB Commands (Not Recommended)” on page 11-6

Specify a Function Handle

Function handles provide a way to represent a function as a variable. The function can be either a
local or nested function in the same file as the app code, or a function defined in a separate file that is
on the MATLAB path. To create the function handle, specify the @ operator before the name of the
function.

For example, to create a button that responds to a click, save the following function to a file named
codeButtonResponse.m on the MATLAB path. This code creates a button using the uibutton
function and sets the ButtonPushedFcn property to be a handle to the function buttonCallback.
It creates this handle using the notation @buttonCallback. Notice that the function handle does not
explicitly refer to any input arguments, but the function declaration includes the src and event
input arguments.

function codeButtonResponse
 fig = uifigure('Position',[500 500 300 200]);
 btn = uibutton(fig,'ButtonPushedFcn',@buttonCallback);

 function buttonCallback(src,event)
 disp('Button pressed');
 end
end

 Write Callbacks for Apps Created Programmatically

11-3

A benefit of specifying callbacks as function handles is that MATLAB checks each callback function
for syntax errors and missing dependencies when you assign it to the component. If there is a
problem in a callback function, then MATLAB returns an error immediately instead of waiting for the
user to trigger the callback. This behavior helps you to find problems in your code before the user
encounters them.

Specify a Cell Array

All callbacks accept two input arguments for the source and event. To specify a callback that accepts
additional input arguments beyond these two, use a cell array. The first element in the cell array is a
function handle. The other elements in the cell array are the additional input arguments you want to
use, separated by commas. The function you specify must accept the source and event arguments as
its first two input arguments, as described in “Specify a Function Handle” on page 11-3. However,
you can define additional inputs in your function declaration after these first two arguments.

For example, the codeComponentResponse function creates a button and a check box component
that both use the same function as a callback, but that pass different arguments to it. To specify
different input arguments for the different components, set the callback properties of both
components to cell arrays. The first element of the cell array is a handle to the componentCallback
function, and the second is the additional input argument to pass to the function.

To run this example, save the function to a file named codeComponentResponse.m on the MATLAB
path. When you select or clear the check box, MATLAB displays You clicked the check box.
When you click the button, MATLAB displays You clicked the button.

function codeComponentResponse
 fig = uifigure('Position',[500 500 300 200]);
 cbx = uicheckbox(fig,'Position',[100 125 84 22], ...
 'ValueChangedFcn',{@componentCallback,'check box'});
 btn = uibutton(fig,'Position',[100 75 84 22], ...
 'ButtonPushedFcn',{@componentCallback,'button'});

 function componentCallback(src,event,comp)
 disp(['You clicked the ' comp]);
 end
end

11 Create and Manage Callbacks Programmatically

11-4

Like callbacks specified as function handles, MATLAB checks callbacks specified as cell arrays for
syntax errors and missing dependencies when you assign them to a component. If there is a problem
in the callback function, then MATLAB returns an error immediately instead of waiting for the user to
trigger the callback. This behavior helps you to find problems in your code before the user
encounters them.

Specify an Anonymous Function

An anonymous function is a function that is not stored in a program file. Specify an anonymous
function when:

• You want a UI component to execute a function that does not support the two source and event
arguments that are required for function handles and cell arrays.

• You want a UI component to execute a script.
• Your callback consists of a single executable statement.

To specify an anonymous function, create a function handle with the two required source and event
input arguments that executes your callback function, script, or statement.

For example, the changeSlider function creates a slider UI component and a button to increment
the slider value. The incrementSlider function does not have the source and event input
arguments, since it is designed to be callable either inside or outside of a callback. To execute
incrementSlider when the button is pressed, create an anonymous function that accepts the src
and event input arguments, ignores them, and executes incrementSlider.

To run the changeSlider function, save the code below to a file named changeSlider.m on the
MATLAB path.

function changeSlider
 fig = uifigure('Position',[500 500 300 200]);
 s = uislider(fig,'Position',[75 150 150 3]);
 incrementSlider;
 b = uibutton(fig,'Position',[100 50 100 22], ...
 'Text','Increment', ...
 'ButtonPushedFcn',@(src,event)incrementSlider);

 function incrementSlider
 if s.Value < s.Limits(2)

 Write Callbacks for Apps Created Programmatically

11-5

 s.Value = s.Value + 1;
 end
 end
end

When your callback is a single executable statement, you can specify the callback as an anonymous
function to avoid needing to define a separate function for the statement. For example, the following
code creates a button that displays Button pressed when the button is clicked by specifying a
callback as an anonymous function.
fig = uifigure('Position',[500 500 300 200]);
btn = uibutton(fig,'ButtonPushedFcn',@(src,event)disp('Button pressed'));

Unlike with callbacks specified as function handles or cell arrays, MATLAB does not check callbacks
specified as anonymous functions for syntax errors and missing dependencies when you assign them
to a component. If there is a problem with the anonymous function, it remains undetected until the
user triggers the callback.

Specify Text Containing MATLAB Commands (Not Recommended)

You can specify a callback as a character vector or a string scalar when you want to execute a few
simple commands, but the callback can become difficult to manage if it contains more than a few
commands. Unlike with callbacks that are specified as function handles or cell arrays, MATLAB does

11 Create and Manage Callbacks Programmatically

11-6

not check character vectors or strings for syntax errors or missing dependencies. If there is a
problem with the MATLAB expression, it remains undetected until the user triggers the callback. The
character vector or string you specify must consist of valid MATLAB expressions, which can include
arguments to functions.

For example, the code below creates a UIAxes object and a button that plots random data on the
axes when it is clicked. Notice that the character vector 'plot(ax,rand(20,3))' contains a
variable, ax The variable ax must exist in the base workspace when the user triggers the callback, or
MATLAB returns an error. The variable does not need to exist at the time you assign callback
property value, but it must exist when the user triggers the callback.

Run the code, then click the button. Since ax exists in your base workspace, the callback command is
valid, and MATLAB plots the data.

fig = uifigure;
ax = uiaxes(fig,'Position',[125 100 300 300]);
b = uibutton(fig,'Position',[225 50 100 22], ...
 'Text','Plot Data', ...
 'ButtonPushedFcn','plot(ax,rand(20,3))');

 Write Callbacks for Apps Created Programmatically

11-7

See Also

Related Examples
• “Share Data Among Callbacks” on page 11-9
• “Interrupt Callback Execution” on page 11-15
• “Anonymous Functions”
• “Callbacks in App Designer” on page 6-15

11 Create and Manage Callbacks Programmatically

11-8

Share Data Among Callbacks
You can write callback functions for UI components in your app to specify how it behaves when a user
interacts with it. (For more information on callback functions in apps, see “Write Callbacks for Apps
Created Programmatically” on page 11-2.)

In apps with multiple interdependent UI components, the callback functions often must access data
defined inside the main app function, or share data with other callbacks. For instance, if you create
an app with a list box, you might want your app to update an image based on the list box option the
app user chooses. Since each callback function has its own scope, you must explicitly share
information about the list box options and images with those parts of your app that need to access it.
To accomplish this, use your main app function to store that information in a way that can be shared
with callbacks. Then, access or modify the information from within the callback functions.

Store App Data
The UI components in your app contain useful information in their properties. For example, you can
find the current position of a slider by querying its Value property. When you create a UI component,
store the component as a variable so that you can set and access its properties throughout your app
code.

In addition to their pre-defined properties, all components have a UserData property, which you can
use to store any MATLAB data. UserData holds only one variable at a time, but you can store
multiple values as a structure array or a cell array. You can use UserData to store handles to the UI
components in your app, as well as other app data that might need to be updated from within your
app code. One useful approach is to store all your app data in the UserData property of the main app
figure window. If you have access to any component in the app, you can access the main figure
window by using the ancestor function. Therefore, this keeps all your app data in a location that is
accessible from within every component callback.

For example, this code creates a figure with a date picker component. It stores both the date picker
and today's date as a structure array in the UserData property of the figure.

fig = uifigure;
d = uidatepicker(fig);
date = datetime("today");
fig.UserData = struct("Datepicker",d,"Today",date);

Note Use the UserData property to store only the data directly related to your app user interface. If
your app uses large data sets, or data that is not created or modified inside your app code, instead
store this data in a separate file and access the file from within your app.

In simple applications, instead of storing your app data in the UserData property, you can store data
as variables in your main app function, and then provide each callback with the relevant data using
input arguments or nested functions.

Access App Data From Callback Functions
To access app data in a component callback function, use one of these methods:

 Share Data Among Callbacks

11-9

• “Access Data in UserData” on page 11-10 — Use this method to update app data from within the
callback function. It requires you to have stored app data in the UserData property, as described
in the previous section.

• “Pass Input Data to Callbacks” on page 11-12 — Use this method in simple apps to limit what
data the callback has access to, and to make it easier to reuse the callback code.

• “Create Nested Callback Functions” on page 11-13 — Use this method in simple apps to provide
your callback functions with access to all the app data, and to organize your app code within a
single file.

Each section below describes one of these methods, and provides an example of using the method to
share data within an app. For each example, the final app behavior is the same: the app user can
enter text into a text area and click a button to generate a word cloud from the text. To accomplish
this, the app must share data between the text area, the button, and the panel that holds the word
cloud. Each example shares this data in a different way.

Access Data in UserData
To keep all your app data organized in one place, store the data somewhere that every component
can easily access. First, in the setup portion of your app code, use the UserData property of the
figure window to store any data a component needs access to from its callbacks. Since every UI
component is a child of the main figure, you can access the figure from within the callback by using
the ancestor function. For example, if your figure contains a panel with a button that is stored in a
variable named btn, you can access the figure with this code.

fig = ancestor(btn,"figure","toplevel");

Then, once you have access to the figure from within the callback, you can access and modify the app
data stored in the UserData of the figure.

11 Create and Manage Callbacks Programmatically

11-10

Example: Word Cloud App Using UserData

In the word cloud app, to share app data when the app user clicks the button, store the data in the
UserData property of the figure. Define a ButtonPushedFcn callback function named
createWordCloud that plots a word cloud based on the text in the text area. The
createWordCloud function needs access to the value of the text box at the time the button is
clicked. It also needs access to the panel container to plot the data in. To provide this access, set the
UserData of the figure to a struct that stores the text area component and the panel container.

fig.UserData = struct("TextArea",txt,"Panel",pnl);

In the createWordCloud function, access the UserData property of the figure. Since MATLAB
automatically passes the component executing the callback to the callback function as src, you can
access the figure from within the callback by using the ancestor function.

fig = ancestor(src,"figure","toplevel");

Then, you can use the figure to access the panel and the text.

data = fig.UserData;
txt = data.TextArea;
pnl = data.Panel;
val = txt.Value;

To run this example, save the shareUserData function to a file named shareUserData.m on the
MATLAB path.

function shareUserData
 % Create figure and grid layout
 fig = uifigure;
 gl = uigridlayout(fig,[2,2]);
 gl.RowHeight = {'1x',30};
 gl.ColumnWidth = {'1x','2x'};

 % Create and lay out text area
 txt = uitextarea(gl);
 txt.Layout.Row = 1;
 txt.Layout.Column = 1;

 % Create and lay out button
 btn = uibutton(gl);
 btn.Layout.Row = 2;
 btn.Layout.Column = 1;
 btn.Text = "Create Word Cloud";

 % Create and lay out panel
 pnl = uipanel(gl);
 pnl.Layout.Row = [1 2];
 pnl.Layout.Column = 2;

 % Store data in figure
 fig.UserData = struct("TextArea",txt,"Panel",pnl);

 % Assign button callback function
 btn.ButtonPushedFcn = @createWordCloud;
end

% Process and plot text

 Share Data Among Callbacks

11-11

function createWordCloud(src,event)
 fig = ancestor(src,"figure","toplevel");
 data = fig.UserData;
 txt = data.TextArea;
 pnl = data.Panel;
 val = txt.Value;

 words = {};
 for k = 1:length(val)
 text = strsplit(val{k});
 words = [words text];
 end
 c = categorical(words);
 wordcloud(pnl,c);
end

Pass Input Data to Callbacks
When a callback function needs access to data, you can pass that data directly to the callback as an
input. In addition to the src and event inputs that MATLAB automatically passes to every callback
function, you can declare your callback function with additional input arguments. Pass these inputs
arguments to the callback function using a cell array or an anonymous function.

Example: Word Cloud App Using Callback Input Arguments

In the word cloud app, to share app data when the app user pushes the button, pass that data to the
ButtonPushedFcn callback function.

Define a ButtonPushedFcn callback function named createWordCloud that plots a word cloud
based on the text in the text area. The createWordCloud function needs access to the value of the
text box at the time the button is clicked. It also needs access to the panel container to plot the data
in. To provide this access, define createWordCloud to take the text area and panel as input
arguments, in addition to the required src and event arguments.

function createWordCloud(src,event,txt,pnl)
 % Code to plot the word cloud
end

Assign the createWordCloud callback function and pass in the text area and panel by specifying
ButtonPushedFcn as a cell array containing a handle to createWordCloud, followed by the
additional input arguments.

btn.ButtonPushedFcn = {@createWordCloud,txt,pnl};

To run this example, save the shareAsInput function to a file named shareAsInput.m on the
MATLAB path.

function shareAsInput
 % Create figure and grid layout
 fig = uifigure;
 gl = uigridlayout(fig,[2,2]);
 gl.RowHeight = {'1x',30};
 gl.ColumnWidth = {'1x','2x'};

 % Create and lay out text area
 txt = uitextarea(gl);

11 Create and Manage Callbacks Programmatically

11-12

 txt.Layout.Row = 1;
 txt.Layout.Column = 1;

 % Create and lay out button
 btn = uibutton(gl);
 btn.Layout.Row = 2;
 btn.Layout.Column = 1;
 btn.Text = "Create Word Cloud";

 % Create and lay out panel
 pnl = uipanel(gl);
 pnl.Layout.Row = [1 2];
 pnl.Layout.Column = 2;

 % Assign button callback function
 btn.ButtonPushedFcn = {@createWordCloud,txt,pnl};
end

% Process and plot text
function createWordCloud(src,event,txt,pnl)
 val = txt.Value;
 words = {};
 for k = 1:length(val)
 text = strsplit(val{k});
 words = [words text];
 end
 c = categorical(words);
 wordcloud(pnl,c);
end

Create Nested Callback Functions
Finally, you can nest callback functions inside the main function of a programmatic app. When you do
this, the nested callback functions share a workspace with the main function. As a result, the nested
functions have access to all the UI components and variables defined in the main function.

Example: Word Cloud App Using Nested Callback

In the word cloud app, to share app data when the app user pushes the button, nest the button
callback function inside the main app function. Define a ButtonPushedFcn callback function named
createWordCloud that plots a word cloud based on the text in the text area. The
createWordCloud function needs access to the value of the text box at the time the button is
clicked. It also needs access to the panel container to plot the data in. To provide this access, define
createWordCloud inside the main nestCallback function. The nested function has access to the t
and p variables that store the text area and panel components.

To run this example, save the nestCallback function to a file named nestCallback.m, and then
run it.

function nestCallback
 % Create figure and grid layout
 fig = uifigure;
 gl = uigridlayout(fig,[2,2]);
 gl.RowHeight = {'1x',30};
 gl.ColumnWidth = {'1x','2x'};

 Share Data Among Callbacks

11-13

 % Create and lay out text area
 t = uitextarea(gl);
 t.Layout.Row = 1;
 t.Layout.Column = 1;

 % Create and lay out button
 b = uibutton(gl);
 b.Layout.Row = 2;
 b.Layout.Column = 1;
 b.Text = "Create Word Cloud";

 % Create and lay out panel
 p = uipanel(gl);
 p.Layout.Row = [1 2];
 p.Layout.Column = 2;

 % Assign button callback function
 b.ButtonPushedFcn = @createWordCloud;

 % Process and plot text
 function createWordCloud(src,event)
 val = t.Value;
 words = {};
 for k = 1:length(val)
 text = strsplit(val{k});
 words = [words text];
 end
 c = categorical(words);
 wordcloud(p,c);
 end

end

See Also

Related Examples
• “Nested Functions”
• “Interrupt Callback Execution” on page 11-15
• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Callbacks in App Designer” on page 6-15
• “Share Data Within App Designer Apps” on page 6-25

11 Create and Manage Callbacks Programmatically

11-14

Interrupt Callback Execution
MATLAB lets you control whether a callback function can be interrupted while it is executing. At
times you might want to permit interruptions. For instance, you might allow users to stop an
animation loop by creating a callback that interrupts the animation. At other times, when the order of
the running callback is important, you might want to prevent potential interruptions. For instance, in
order to make an app more responsive, you might prevent interruption of callbacks that respond to
pointer movement.

Interrupted Callback Behavior
Callback functions execute according to their order in a queue. If a callback is executing and a user
action triggers a second callback, the second callback attempts to interrupt the first callback. The
first callback is the running callback. The second callback is the interrupting callback.

Certain commands that occur in the running callback cause MATLAB to process the rest of the
callback queue. MATLAB determines callback interruption behavior whenever it executes one of
these commands. These commands include drawnow, figure, uifigure, getframe, waitfor, and
pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines whether the interruption occurs:

• If the value of Interruptible is 'on', then the interruption occurs. When MATLAB processes
the callback queue, it pauses the execution of the running callback and executes the interrupting
callback. After the interrupting callback is complete, MATLAB then resumes executing the
running callback.

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the interrupting callback determines what MATLAB does with the interrupting
callback:

• If the value of BusyAction is 'queue', MATLAB executes the interrupting callback after the
running callback finishes.

• If the value of BusyAction is 'cancel', MATLAB discards the interrupting callback.

The default value of Interruptible is 'on', and the default value of BusyAction is 'queue'.

Finally, if the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the value of the Interruptible property.

Control Callback Interruption Behavior
This example shows how the Interruptible and BusyAction component properties interact to
produce different types of callback interruption behavior.

Create a file called callbackBehavior.m in your current folder, and define in it a function with the
same name. This function creates an app with two figure windows, each with two buttons. Each of the
buttons has a ButtonPushedFcn callback and a different callback execution property value. If you
click one button, and then click a second button before the first one is done, then the callback of the

 Interrupt Callback Execution

11-15

second button attempts to interrupt the first. The buttons in the first window display and update a
progress dialog when clicked. The buttons in the second window plot data when clicked. You can
control what happens by defining the interruption behavior for the two buttons.

function callbackBehavior
% Create the figures and grid layouts
fig1 = uifigure('Position',[400 600 500 150]);
g1 = uigridlayout(fig1,[2,2]);
fig2 = uifigure('Position',[400 100 500 400]);
g2 = uigridlayout(fig2,[3,2], ...
 'RowHeight', {'1x','1x','8x'});

% Create the label for the first figure window
lbl1 = uilabel(g1,'Text','1. Click a button to clear the axes and generate a progress dialog.');
lbl1.Layout.Column = [1 2];
lbl1.HorizontalAlignment = 'center';

% Create the buttons that create a progress dialog
interrupt = uibutton(g1, ...
 'Text','Wait (interruptible)', ...
 'Interruptible','on', ...
 'ButtonPushedFcn',@createProgressDlg);
nointerrupt = uibutton(g1, ...
 'Text','Wait (not interruptible)', ...
 'Interruptible','off', ...
 'ButtonPushedFcn',@createProgressDlg);

% Create the label for the second figure window
lbl2 = uilabel(g2,'Text','2. Click a button to plot some data.');
lbl2.Layout.Column = [1 2];
lbl2.HorizontalAlignment = 'center';

% Create the axes
ax = uiaxes(g2);
ax.Layout.Row = 3;
ax.Layout.Column = [1 2];

% Create the buttons to plot data
queue = uibutton(g2, ...
 'Text','Plot (queue)', ...
 'BusyAction','queue', ...
 'ButtonPushedFcn',@(src,event)surf(ax,peaks(35)));
queue.Layout.Row = 2;
queue.Layout.Column = 1;

cancel = uibutton(g2, ...
 'Text','Plot (cancel)', ...
 'BusyAction','cancel', ...
 'ButtonPushedFcn',@(src,event)surf(ax,peaks(35)));
cancel.Layout.Row = 2;
cancel.Layout.Column = 2;

 % Callback function to create and update a progress dialog
 function createProgressDlg(src,event)
 % Clear axes
 cla(ax,'reset')
 % Create the dialog
 dlg = uiprogressdlg(fig1,'Title','Please Wait',...

11 Create and Manage Callbacks Programmatically

11-16

 'Message','Loading...');
 steps = 250;
 for step = 1:steps
 % Update progress
 dlg.Value = step/steps;
 pause(0.01)
 end
 close(dlg)
 end
end

Call the callbackBehavior function to display the figure windows.

callbackBehavior

Click pairs of buttons to see the effects of different combinations of Interruptible and
BusyAction property values.

 Interrupt Callback Execution

11-17

• Callback interruption — Click Wait (interruptible) immediately followed by either button in the
second window: Plot (queue) or Plot (cancel). Because the first button has its Interruptible
value set to 'on', interruption occurs. The plot appears while the progress dialog is still running.

• Callback queueing — Click Wait (not interruptible) immediately followed by Plot (queue).
Because the first button has its Interruptible value set to 'on' and the second button has its
BusyAction value set to 'queue', queueing occurs. The progress dialog runs to completion.
Then, the plot displays.

• Callback cancellation — Click Wait (not interruptible) immediately followed by Plot (cancel).
Because the first button has its Interruptible value set to 'on' and the second button has its
BusyAction value set to 'cancel', cancellation occurs. The progress dialog runs to completion.
But then, no plot appears, because MATLAB® has discarded the plot callback.

See Also
timer | drawnow | waitfor | uiwait

Related Examples
• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Schedule Command Execution Using Timer”
• “Create Responsive Apps” on page 8-8

11 Create and Manage Callbacks Programmatically

11-18

Developing Classes of UI Component
Objects

• “Develop Custom UI Components Programmatically” on page 12-2
• “Manage Properties of Custom UI Components Programmatically” on page 12-9
• “Configure Custom UI Components for App Designer” on page 12-17
• “Customize Properties of HTML UI Components” on page 12-24

12

Develop Custom UI Components Programmatically
To create custom UIs and visualizations, you can combine multiple graphics and UI objects, change
their properties, or call additional functions. In R2020a and earlier releases, a common way to store
your customization code and share it with others is to write a script or a function.

Starting in R2020b, instead of a script or function, you can create a class implementation for your UI
components by defining a subclass of the ComponentContainer base class. Creating a class has
these benefits:

• Easy customization — When users want to customize an aspect of your UI component, they can set
a property rather than having to modify and rerun your code. Users can modify properties at the
command line or inspect them in the Property Inspector.

• Encapsulation — Organizing your code in this way allows you to hide implementation details from
your users. You implement methods that perform calculations and manage the underlying graphics
objects.

This topic gives an overview of the steps to create a custom UI component by defining a class
programmatically. Alternatively, starting in R2022a, you can create a custom UI component
interactively using App Designer. For more information about the interactive approach, see “Create a
Simple Custom UI Component in App Designer” on page 13-2.

Structure of a UI Component Class
A UI component class has several required parts, and several more that are optional.

In the first line of a UI component class, specify the
matlab.ui.componentcontainer.ComponentContainer class as the superclass. For example,
the first line of a class called ColorSelector looks like this:

classdef ColorSelector < matlab.ui.componentcontainer.ComponentContainer

In addition to specifying the superclass, include the following components in your class definition.
Some components are required, while other components are either recommended or optional.

Component Description
Public property block on
page 12-3
(recommended)

This block defines all the properties that users have access to. Together,
these properties make up the user interface of your UI component.

Private property block
on page 12-3
(recommended)

This block defines the underlying graphics objects and other
implementation details that users cannot access.

In this block, set these attribute values:

• Access = private
• Transient
• NonCopyable

12 Developing Classes of UI Component Objects

12-2

Component Description
Events block on page
12-4
(optional)

This block defines the events that this UI component will trigger.

In this block, set these attribute values:

• HasCallbackProperty
• NotifyAccess = protected

When you set the HasCallbackProperty attribute, MATLAB creates a
public property for each event in the block. The public property stores the
user-provided callback to execute when the event fires.

setup method on page
12-5
(required)

This method sets the initial state of the UI component. It executes once
when MATLAB constructs the object.

Define this method in a protected methods block.
update method on
page 12-5
(required)

This method updates the underlying objects in your UI component. It
executes under the following conditions:

• During the next drawnow execution after the user changes one or more
property values

• When an aspect of the user's graphics environment changes (such as
the size)

Define this method in the same protected block as the setup method.

Constructor Method
You do not have to write a constructor method for your class, because it inherits one from the
ComponentContainer base class. The inherited constructor accepts optional input arguments: a
parent container and any number of name-value pair arguments for setting properties on the UI
component. For example, if you define a class called ColorSelector that has the public properties
Value and ValueChangedFcn, you can create an instance of your class using this code:
f = uifigure;
c = ColorSelector(f,'Value',[1 1 0],'ValueChangedFcn',@(o,e)disp('Changed'))

If you want to provide a constructor that has a different syntax or different behavior, you can define a
custom constructor method. For an example of a custom constructor, see “Write Constructors for
Chart Classes”.

Public and Private Property Blocks
Divide your class properties between at least two blocks:

• A public block for storing the components of the user-facing interface
• A private block for storing the implementation details that you want to hide

The properties that go in the public block store the input values provided by the user. For example, a
UI component that allows a user to pick a color value might store the color value in a public property.
Since the property name-value pair arguments are optional inputs to the implicit constructor method,
the recommended approach is to initialize the public properties to default values.

 Develop Custom UI Components Programmatically

12-3

The properties that go in the private block store the underlying graphics objects that make up your
UI component, in addition to any calculated values that you want to store. Eventually, your class will
use the data in the public properties to configure the underlying objects. Set the Transient and
NonCopyable attributes for the private block to avoid storing redundant information if the user
copies or saves an instance of the UI component.

For example, here are the property blocks for a UI component that allows a user to pick a color value.
The public property block stores the value that the user can control: the color value. The private
property block stores the grid layout manager, button, and edit field objects.

properties
 Value {validateattributes(Value, ...
 {'double'},{'<=',1,'>=',0,'size',[1 3]})} = [1 0 0];
end

properties (Access = private,Transient,NonCopyable)
 Grid matlab.ui.container.GridLayout
 Button matlab.ui.control.Button
 EditField matlab.ui.control.EditField
end

Event Block
You optionally can add a third block for events that the UI component fires.

Create a public property for each event in the block by specifying the HasCallbackProperty
attribute. The public property stores the user-provided callback to execute when the event fires. The
name of the public property is the name of the event appended with the letters Fcn. For example, a
UI component that allows a user to pick a color value might define the event ValueChanged, which
generates the corresponding public property ValueChangedFcn. Use the notify method to fire the
event and execute the callback in the property.

For example, here is the event block for a UI component that allows a user to pick a color value.

events (HasCallbackProperty, NotifyAccess = protected)
 ValueChanged
end

When the user picks a color value, call the notify method to fire the ValueChanged event and
execute the callback in the ValueChangedFcn property.

function getColorFromUser(comp)
 c = uisetcolor(comp.Value);
 if (isscalar(c) && (c == 0))
 return;
 end

 % Update the Value property
 oldValue = comp.Value;
 comp.Value = c;

 % Execute user callbacks and listeners
 notify(comp,'ValueChanged');
end

When a user creates an instance of the UI component, they can specify a callback to execute when
the color value changes using the generated public property.
f = uifigure;
c = ColorSelector(f,'ValueChangedFcn',@(o,e)disp('Changed'))

12 Developing Classes of UI Component Objects

12-4

For more information about specifying callbacks to properties, see “Write Callbacks for Apps Created
Programmatically” on page 11-2.

Setup Method
Define a setup method for your class. A setup method executes once when MATLAB constructs the
UI component object. Any property values passed as name-value arguments to the constructor
method are assigned after this method executes.

Use the setup method to:

• Create graphics and UI objects that make up the component.
• Store the objects as private properties on the component object.
• Lay out and configure the objects.
• Wire up the objects to do something useful within the component.

Define the setup method in a protected block.

Most UI object creation functions have an optional input argument for specifying the parent. When
you call these functions from within a class method, you must specify the target parent. Specify the
target parent as the UI component object being set up by using the class instance argument passed
to the method.

For example, consider a UI component that has these properties:

• One public property called Value
• Three private properties called Grid, Button, and EditField

The setup method calls the uigridlayout, uieditfield, and uibutton functions to create the
underlying graphics object for each private property, specifying the instance of the UI component
(comp) as the target parent.

function setup(comp)
 % Create grid layout to manage building blocks
 comp.Grid = uigridlayout(comp,[1 2],'ColumnWidth',{'1x',22},...
 'RowHeight',{'fit'},'ColumnSpacing',2,'Padding',2);

 % Create edit field for entering color value
 comp.EditField = uieditfield(comp.Grid,'Editable',false,...
 'HorizontalAlignment','center');

 % Create button to confirm color change
 comp.Button = uibutton(comp.Grid,'Text',char(9998), ...
 'ButtonPushedFcn',@(o,e) comp.getColorFromUser());
end

Update Method
Define an update method for your class. This method executes when your UI component object
needs to change its appearance in response to a change in values.

Use the update method to reconfigure the underlying graphics objects in your UI component based
on the new values of the public properties. Typically, this method does not determine which of the

 Develop Custom UI Components Programmatically

12-5

public properties changed. It reconfigures all aspects of the underlying graphics objects that depend
on the public properties.

For example, consider a UI component that has these properties:

• One public property called Value
• Three private properties called Grid, Button, and EditField

The update method updates the BackgroundColor of the EditField and Button objects with the
color stored in Value. The update method also updates the EditField object with a numeric
representation of the color. This way, however Value is changed, the change becomes equally visible
everywhere.

function update(comp)
 % Update edit field and button colors
 set([comp.EditField comp.Button],'BackgroundColor',comp.Value, ...
 'FontColor',comp.getContrastingColor(comp.Value));

 % Update edit field display text
 comp.EditField.Value = num2str(comp.Value,'%0.2g ');

end

There might be a delay between changing property values and seeing the results of those changes.
The update method runs for the first time after the setup method runs and then it runs every time
drawnow executes. The drawnow function automatically executes periodically, based on the state of
the graphics environment in the user's MATLAB session. This periodic execution can lead to the
potential delay.

Example: Color Selector UI Component
This example shows how to create a UI component for selecting a color, using the code discussed in
other sections of this page. Create a class definition file named ColorSelectorComponent.m in a
folder that is on the MATLAB path. Define the class by following these steps.

Step Implementation
Derive from the
ComponentContainer
base class.

classdef ColorSelector < matlab.ui.componentcontainer.ComponentContainer

Define public
properties.

 properties
 Value {validateattributes(Value, ...
 {'double'},{'<=',1,'>=',0,'size',[1 3]})} = [1 0 0];
 end

Define public events. events (HasCallbackProperty, NotifyAccess = protected)
 ValueChanged % ValueChangedFcn will be the generated callback property
 end

Define private
properties.

 properties (Access = private, Transient, NonCopyable)
 Grid matlab.ui.container.GridLayout
 Button matlab.ui.control.Button
 EditField matlab.ui.control.EditField
 end

12 Developing Classes of UI Component Objects

12-6

Step Implementation
Implement the setup
method. In this case,
call the uigridlayout,
uieditfield, and
uibutton functions to
create GridLayout,
EditField, and
Button objects. Store
those objects in the
corresponding private
properties.

Specify the
getColorFromUser
method as the
ButtonPushedFcn
callback that is called
when the button is
pressed.

 methods (Access = protected)
 function setup(comp)
 % Grid layout to manage building blocks
 comp.Grid = uigridlayout(comp,[1,2],'ColumnWidth',{'1x',22}, ...
 'RowHeight',{'fit'},'ColumnSpacing',2,'Padding',2);

 % Edit field for value display and button to launch uisetcolor
 comp.EditField = uieditfield(comp.Grid,'Editable',false, ...
 'HorizontalAlignment','center');
 comp.Button = uibutton(comp.Grid,'Text',char(9998), ...
 'ButtonPushedFcn',@(o,e) comp.getColorFromUser());

 end

Implement the update
method. In this case,
update the background
color of the underlying
objects and the text in
the edit field to show
the color value.

 function update(comp)
 % Update edit field and button colors
 set([comp.EditField comp.Button],'BackgroundColor',comp.Value, ...
 'FontColor',comp.getContrastingColor(comp.Value));

 % Update the display text
 comp.EditField.Value = num2str(comp.Value,'%0.2g ');
 end
 end

Wire the callbacks and
other pieces together
using private methods.

When the
getColorFromUser
method is triggered by
a button press, call the
uisetcolor function
to open the color picker
and then call the
notify function to
execute the user
callback and listener
functions.

When the
getContrastingColo
r method is called by
the update method,
calculate whether black
or white text is more
readable on the new
background color.

 methods (Access = private)
 function getColorFromUser(comp)
 c = uisetcolor(comp.Value);
 if (isscalar(c) && (c == 0))
 return;
 end

 % Update the Value property
 comp.Value = c;

 % Execute user callbacks and listeners
 notify(comp,'ValueChanged');
 end
 function contrastColor = getContrastingColor(~,color)
 % Calculate opposite color
 c = color * 255;
 contrastColor = [1 1 1];
 if (c(1)*.299 + c(2)*.587 + c(3)*.114) > 186
 contrastColor = [0 0 0];
 end
 end
 end
end

 Develop Custom UI Components Programmatically

12-7

Next, create an instance of the UI component by calling the implicit constructor method with a few of
the public properties. Specify a callback to display the words Color changed when the color value
changes.

h = ColorSelector('Value', [1 1 0]);
h.ValueChangedFcn = @(o,e) disp('Color changed');

Click the button and select a color using the color picker. The component changes appearance and
MATLAB displays the words Color changed in the Command Window.

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Functions
uibutton | uieditfield | uigridlayout

More About
• “Components of a Class”
• “Configure Custom UI Components for App Designer” on page 12-17

12 Developing Classes of UI Component Objects

12-8

Manage Properties of Custom UI Components
Programmatically

When you develop a custom UI component as a subclass of the ComponentContainer base class,
you can use certain techniques to make your code more robust, efficient, and user-friendly. These
techniques focus on how you define and manage the properties of your class. Use any that are helpful
for the type of component you want to create and the user experience you want to provide.

• “Initialize Property Values” on page 12-9 — Set the default state of the UI component in case
your users call the implicit constructor without any input arguments.

• “Validate Property Values” on page 12-9 — Ensure that the values are valid before using them.
• “Customize the Property Display” on page 12-10 — Provide a customized list of properties in the

Command Window when a user references the UI component object without a semicolon.
• “Optimize the update Method” on page 12-11 — Improve the performance of the update method

when only a subset of your properties are used in a time-consuming calculation.

For an example of these techniques, see “Example: Optimized Polynomial Fit UI Component with
Customized Property Display” on page 12-12.

In addition, there are certain considerations and limitations to keep in mind if you want to use your
custom UI component in App Designer, or share your component with users who develop apps in App
Designer. These considerations are listed on a separate page, in “Configure Custom UI Components
for App Designer” on page 12-17.

Initialize Property Values
Assign default values for all of the public properties of your class. This allows MATLAB to create a
valid UI component even if the user omits some name-value arguments when they call the constructor
method.

For UI components that contain a chart and have properties that store coordinate data, set the initial
values to NaN values or empty arrays so that the default chart is empty when the user does not
specify the coordinates.

Validate Property Values
Before your code uses property values, confirm that they have the correct size and class. For
example, this property block validates the size and class of three properties.

properties
 LineColor {validateattributes(LineColor,{'double'}, ...
 {'<=',1,'>=',0,'size',[1 3]})} = [1 0 0]
 XData (1,:) double = NaN
 YData (1,:) double = NaN
end

LineColor must be a 1-by-3 array of class double, where each value is in the range [0,1]. Both
XData and YData must be row vectors of class double.

You can also validate properties that store the underlying component objects in your UI component.
To do this, you need to know the correct class name for each object. To determine the class name of

 Manage Properties of Custom UI Components Programmatically

12-9

an object, call the corresponding UI component function at the command line, and then call the
class function to get the class name. For example, if you plan to create a drop-down component in
your setup method, call the uidropdown function at the command line with an output argument.
Then, pass the output to the class function to get its class name.

dd = uidropdown;
class(d)

ans =

 'matlab.ui.control.DropDown'

Use the output of the class function to validate the class for the corresponding property in your
class. Specify the class after the property name. For example, the following property stores a
DropDown object and validates its class.

properties (Access = private, Transient, NonCopyable)
 DropDown matlab.ui.control.DropDown
end

Occasionally, you might want to define a property that can store different shapes and classes of
values. For example, if you define a property that can store a character vector, cell array of character
vectors, or string array, omit the size and class validation or use a custom property validation method.
For more information about validating properties, see “Validate Property Values”.

Customize the Property Display
One of the benefits of defining your UI component as a subclass of the ComponentContainer base
class is that it also inherits from the matlab.mixin.CustomDisplay class. This lets you customize
the list of properties MATLAB displays in the Command Window when you reference the UI
component without a semicolon. To customize the property display, overload the
getPropertyGroups method. Within that method, you can customize which properties are listed
and the order of the list. For example, consider a FitPlot class that has the following public
properties.

properties
 LineColor {validateattributes(LineColor,{'double'}, ...
 {'<=',1,'>=',0,'size',[1 3]})} = [1 0 0]
 XData (1,:) double = NaN
 YData (1,:) double = NaN
end

The following getPropertyGroups method specifies the scalar object property list as XData,
YData, and LineColor.

function propgrp = getPropertyGroups(comp)
 if ~isscalar(comp)
 % List for array of objects
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(comp);
 else
 % List for scalar object
 propList = {'XData','YData','LineColor'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
end

12 Developing Classes of UI Component Objects

12-10

When the user references an instance of this UI component without a semicolon, MATLAB displays
the customized list.

p = FitPlot

p =

 FitPlot with properties:

 XData: NaN
 YData: NaN
 LineColor: [1 0 0]

For more information about customizing the property display, see “Customize Property Display”.

Optimize the update Method
In most cases, the update method of your class reconfigures all the relevant aspects of your UI
component that depend on the public properties. Sometimes, the reconfiguration involves an
expensive calculation that is time consuming. If the calculation involves only a subset of the
properties, you can design your class to execute that code only when it is necessary.

One way to optimize the update method is to add these elements to your class:

• A private property called ExpensivePropChanged that accepts a logical value. This property
indicates whether any of the properties used in the expensive calculation have changed.

• A set method for each property involved in the expensive calculation. Within each set method,
set the ExpensivePropChanged property to true.

• A protected method called doExpensiveCalculation that performs the expensive calculation.
• A conditional statement in the update method that checks the value of ExpensivePropChanged.

If the value is true, execute doExpensiveCalculation.

The following code provides a template for this design.
classdef OptimizedUIComponent < matlab.ui.componentcontainer.ComponentContainer

 properties
 Prop1
 Prop2
 end
 properties(Access=private,Transient,NonCopyable)
 ExpensivePropChanged (1,1) logical = true
 end

 methods(Access = protected)
 function setup(comp)
 % Configure UI component
 % ...
 end
 function update(comp)
 % Perform expensive computation if needed
 if comp.ExpensivePropChanged
 doExpensiveCalculation(comp);
 comp.ExpensivePropChanged = false;
 end

 % Update other aspects of UI component
 % ...
 end
 function doExpensiveCalculation(comp)
 % Expensive code

 Manage Properties of Custom UI Components Programmatically

12-11

 % ...
 end
 end

 methods
 function set.Prop2(comp,val)
 comp.Prop2 = val;
 comp.ExpensivePropChanged = true;
 end
 end
end

In this case, Prop2 is involved in the expensive calculation. The set.Prop2 method sets the value of
Prop2, and then it sets ExpensivePropChanged to true. The next time the update method runs, it
calls doExpensiveCalculation only if ExpensivePropChanged is true. Then, the update
method continues to update other aspects of the UI component.

Example: Optimized Polynomial Fit UI Component with Customized
Property Display
This example defines a FitPlot class for interactively displaying best fit polynomials, and uses all
four of these best practices. The properties defined in the properties block have default values and
use size and class validation. The getPropertyGroups method defines a custom order for the
property display. The changeFit method performs the potentially expensive polynomial fit
calculation, and the update method executes changeFit only if the plotted data changed.

To define this class, save the FitPlot class definition to a file named FitPlot.m in a folder that is
on the MATLAB path.
classdef FitPlot < matlab.ui.componentcontainer.ComponentContainer
 % Choose a fit method for your plotted data

 properties
 LineColor {validateattributes(LineColor,{'double'}, ...
 {'<=',1,'>=',0,'size',[1 3]})} = [1 0 0]
 XData (1,:) double = NaN
 YData (1,:) double = NaN
 end

 properties (Access = private, Transient, NonCopyable)
 DropDown matlab.ui.control.DropDown
 Axes matlab.ui.control.UIAxes
 GridLayout matlab.ui.container.GridLayout
 DataLine (1,1) matlab.graphics.chart.primitive.Line
 FitLine (1,1) matlab.graphics.chart.primitive.Line
 FitXData (1,:) double
 FitYData (1,:) double
 ExpensivePropChanged (1,1) logical = true
 end

 methods (Access=protected)
 function setup(comp)
 % Set the initial position of this component
 comp.Position = [100 100 300 300];

 % Create the grid layout, drop-down, and axes
 comp.GridLayout = uigridlayout(comp,[2,1], ...
 'RowHeight',{20,'1x'},...
 'ColumnWidth',{'1x'});
 comp.DropDown = uidropdown(comp.GridLayout, ...
 'Items',{'None','Linear','Quadratic','Cubic'}, ...
 'ValueChangedFcn',@(s,e) changeFit(comp));
 comp.Axes = uiaxes(comp.GridLayout);

 % Create the line objects
 comp.DataLine = plot(comp.Axes,NaN,NaN,'o');

12 Developing Classes of UI Component Objects

12-12

 hold(comp.Axes,'on');
 comp.FitLine = plot(comp.Axes,NaN,NaN);
 hold(comp.Axes,'off');
 end

 function update(comp)
 % Update data points
 comp.DataLine.XData = comp.XData;
 comp.DataLine.YData = comp.YData;

 % Do an expensive operation
 if comp.ExpensivePropChanged
 comp.changeFit();
 comp.ExpensivePropChanged = false;
 end

 % Update the fit line
 comp.FitLine.Color = comp.LineColor;
 comp.FitLine.XData = comp.FitXData;
 comp.FitLine.YData = comp.FitYData;
 end

 function changeFit(comp)
 % Calculate the fit line based on the drop-down value
 if strcmp(comp.DropDown.Value,'None')
 comp.FitXData = NaN;
 comp.FitYData = NaN;
 else
 switch comp.DropDown.Value
 case 'Linear'
 f = polyfit(comp.XData,comp.YData,1);
 case 'Quadratic'
 f = polyfit(comp.XData,comp.YData,2);
 case 'Cubic'
 f = polyfit(comp.XData,comp.YData,3);
 end
 comp.FitXData = linspace(min(comp.XData),max(comp.XData));
 comp.FitYData = polyval(f,comp.FitXData);
 end
 end

 function propgrp = getPropertyGroups(comp)
 if ~isscalar(comp)
 % List for array of objects
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(comp);
 else
 % List for scalar object
 propList = {'XData','YData','LineColor'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end

 end

 methods
 function set.XData(comp,val)
 comp.XData = val;
 comp.ExpensivePropChanged = true;
 end
 function set.YData(comp,val)
 comp.YData = val;
 comp.ExpensivePropChanged = true;
 end
 end
end

Define some sample data and use it to create an instance of FitPlot.

x = [0 0.3 0.8 1.1 1.6 2.3];
y = [0.6 0.67 1.01 1.35 1.47 1.25];
p = FitPlot('XData',x,'YData',y)

 Manage Properties of Custom UI Components Programmatically

12-13

ans =

 FitPlot with properties:

 XData: [1×43 double]
 YData: [1×43 double]
 LineColor: [1 0 0]

Use the drop-down to display the quadratic best fit curve.

12 Developing Classes of UI Component Objects

12-14

Set the LineColor property to change the color of the best fit curve to green.

p.LineColor = [0 0.5 0];

 Manage Properties of Custom UI Components Programmatically

12-15

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Functions
uidropdown | uigridlayout | polyfit

More About
• “Validate Property Values”
• “Customize Property Display”
• “Property Set Methods”
• “Develop Custom UI Components Programmatically” on page 12-2

12 Developing Classes of UI Component Objects

12-16

Configure Custom UI Components for App Designer

In this section...
“Custom UI Component Prerequisites” on page 12-17
“Configure Custom UI Component” on page 12-18
“View Configured UI Component in App Designer” on page 12-19
“Reconfigure Custom UI Component” on page 12-20
“Remove UI Component from App Designer” on page 12-21
“Share Configured UI Component” on page 12-22
“Troubleshoot Missing Custom UI Component” on page 12-22

Starting in R2021a, when you create a custom UI component, you can configure your component for
app creators to use interactively in App Designer. After you configure your UI component, app
creators can add the component to the Component Library and can interact with the component on
the App Designer canvas and in the Property Inspector.

Follow these configuration steps if you have created a custom UI component, either interactively in
App Designer or programmatically as a subclass of the
matlab.ui.componentcontainer.ComponentContainer base class, and you would like to use it
in either of these ways:

• Access your UI component from the App Designer Component Library and interactively use it to
create an App Designer app.

• Share your UI component for others to use interactively to create apps in App Designer.

For more information about creating a custom UI component, see:

• “Create a Simple Custom UI Component in App Designer” on page 13-2 to create a component
interactively

• “Develop Custom UI Components Programmatically” on page 12-2 to create a component
programmatically

Custom UI Component Prerequisites
To allow your custom UI component to be used interactively in App Designer, there are some
requirements that your UI component class must satisfy.

To successfully configure your UI component, the setup method of your UI component class cannot
have required input arguments. Also, the component class cannot dynamically add additional UI
components to its parent container. The only exception is that the class can dynamically add a
ContextMenu component in the parent figure.

For a public property of your component class to appear in the Property Inspector, you must specify
its type or assign a default value to it. If the property is an enumeration, you must both specify its
type and assign it a default value. In addition, the property type must belong to the list of types
supported by App Designer. This table shows the allowable property types and their appearance in
the Property Inspector.

 Configure Custom UI Components for App Designer

12-17

Property Category Supported Data Types Property Inspector Input
Numerical Scalars or arrays of type

single, double, int8, int16,
int32, int64, uint8, uint16,
uint32, or uint64

Edit field

Logical logical Check box
Text Scalars of type string, scalars

or row vectors of type char,
and scalars or vectors of type
cell

Text area

Enumeration enumeration Editable drop-down list

For more information on specifying property types and assigning default values, see:

• “Create Public Properties for Custom UI Components in App Designer” on page 13-13 for
components created interactively

• “Manage Properties of Custom UI Components Programmatically” on page 12-9 for components
created programmatically

Configure Custom UI Component
The way you configure your custom UI component for use in App Designer depends on whether you
created the component interactively in App Designer or programmatically as a subclass of the
ComponentContainer base class.

• Components created in App Designer — Open the component in App Designer. In the File section

of the Designer tab, click Configure.

Alternatively, call the appdesigner.customcomponent.configureMetadata function from
the MATLAB Command Window and pass it a path to your component MLAPP file.

• Components created programmatically — Call the
appdesigner.customcomponent.configureMetadata function from the MATLAB Command
Window and pass it a path to your component class file.

For example, to configure a custom UI component saved as ColorSelector.m in the folder
C:\MyComponents, use this command:
appdesigner.customcomponent.configureMetadata('C:\MyComponents\ColorSelector.m');

Following these steps opens the App Designer Custom UI Component Metadata dialog box. This
dialog box allows you to specify metadata about the component. App Designer uses this metadata to
display the component in the Component Library.

12 Developing Classes of UI Component Objects

12-18

The dialog box prepopulates all of the required metadata from the component class definition. You
can edit the prepopulated metadata using the form. Select OK to configure the UI component.

After you select OK, the function creates a folder named resources in the same folder as your
custom component file. Inside the resources folder, the function generates a file named
appDesigner.json. This file contains the metadata you provided in the dialog box, in addition to
other metadata MATLAB needs to make your component available in App Designer.

Note Do not modify the appDesigner.json file by hand. To change any custom UI component
metadata, reconfigure the component.

View Configured UI Component in App Designer
After you configure your custom UI component, you can view and use it in App Designer. For the UI
component to appear in the App Designer Component Library, you must add the folder containing
the component file and generated resources folder to the MATLAB path.

For example, if you have create a ColorSelector custom component, save it to a folder named
MyComponents, and configure its App Designer metadata, follow these steps to use the component in
App Designer:

1 Add the MyComponents folder to the MATLAB path by following the steps in “Change Folders on
Search Path”.

2 Open App Designer and select Blank App.
3 Drag the component from the Component Library onto the App Designer canvas.

The Property Inspector for the component lists the public properties and callbacks of the component.

 Configure Custom UI Components for App Designer

12-19

Note Avoid making changes to a custom component file while using the component in an App
Designer app, as doing so might lead to errors or unexpected behavior.

Reconfigure Custom UI Component
Reconfigure a previously configured UI component when:

• You want to change existing UI component metadata and update how the component is displayed
in the App Designer Component Library.

• You have made changes to the UI component position or layout in your class definition.

To reconfigure your UI component, follow the same steps in the “Configure Custom UI Component”
on page 12-18 section. The App Designer Custom UI Component Metadata dialog box opens with the
existing metadata prepopulated.

Update the metadata, and then select OK.

12 Developing Classes of UI Component Objects

12-20

Go back to App Designer. The component appears in the Component Library with the updated
configuration options.

Remove UI Component from App Designer
To remove a custom UI component from the App Designer Component Library, use the
appdesigner.customcomponent.removeMetadata function.

Call the function by passing it the path to your component file. The function removes the metadata for
the UI component from the appDesigner.json file inside the resources folder and removes the
component from the App Designer Component Library.
appdesigner.customcomponent.removeMetadata('C:\MyComponents\ColorSelector.m');

After you remove the App Designer metadata for a custom UI component, any App Designer apps that
use it do not load correctly. To continue editing an app that uses the UI component, reconfigure the
component before you open the app.

 Configure Custom UI Components for App Designer

12-21

Share Configured UI Component
After configuring a UI component, you can share the component for others to use in App Designer.
You can either share the relevant files directly or package the component as a toolbox. In either case,
you must also share the generated resources folder.

Share UI Component Files Directly

To share a configured UI component directly with a user, create and share a folder with these
contents:

• The UI component class file
• The generated resources folder

Instruct the user you are sharing the UI component with to add the shared folder to the MATLAB
path.

Package UI Component as a Toolbox

Package your UI component as a toolbox by following the steps in “Create and Share Toolboxes”.
Make sure the folder you package as a toolbox has these contents:

• The UI component class file
• The generated resources folder

You can share the resulting .mltbx file directly with your users. To install it, they must double-click
the .mltbx file in the MATLAB Current Folder browser.

Alternatively, you can share your UI component as an add-on by uploading the .mltbx file to
MATLAB Central File Exchange. Your users can find and install your add-on from the MATLAB
Toolstrip by performing these steps:

1
In the MATLAB Toolstrip, on the Home tab, in the Environment section, select Add-Ons .

2 Find the add-on by browsing through available categories on the left side of the Add-On Explorer
window. Alternatively, use the search bar to search for an add-on using a keyword.

3 Click the add-on to open its detailed information page.
4 On the information page, click Add to install the add-on.

Troubleshoot Missing Custom UI Component
To open an app that contains a custom UI component, the component file and generated resources
folder must be on the MATLAB path. If App Designer cannot load a custom UI component, it will
display a warning dialog box when the app is opened. If you encounter this dialog box when opening
an app, follow these steps to load the missing component:

1 Make sure that the UI component file and generated resources folder with the component
metadata are in a single folder.

2 Add the folder containing the component file and resources folder to the MATLAB path by
following the steps in “Change Folders on Search Path”.

3 Reopen the app that contains the custom UI component. The app and component should now
load as expected.

12 Developing Classes of UI Component Objects

12-22

https://www.mathworks.com/matlabcentral/fileexchange/

See Also
Functions
appdesigner.customcomponent.configureMetadata |
appdesigner.customcomponent.removeMetadata | appdesigner

Classes
matlab.ui.componentcontainer.ComponentContainer

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Develop Custom UI Components Programmatically” on page 12-2

 Configure Custom UI Components for App Designer

12-23

Customize Properties of HTML UI Components
To extend your custom UI component using third-party visualizations or widgets, create a custom
component that contains an HTML UI component. Use the underlying HTML UI component to
customize the component appearance and to interface with third-party libraries, and use the custom
component capabilities to define component properties and callbacks that the user can set.

Custom Component Overview
To create a custom UI component that uses an HTML UI component, there are two files that you must
create.

• Custom UI component file — In this file, you define your custom component. You specify its
properties, its property values, the events it listens for, and the callback functions it executes.

• HTML source file — In this file, you configure and update the visual appearance of the UI
component, listen for user interactions, and pass the information that an interaction has occurred
to the UI component class.

Your code must communicate changes to property values and user interactions across these two files.

Enable Response to Property Updates

Since the custom UI component file defines the properties that users can set, but the HTML source
file controls the visual style of the component, these two files need to communicate about property
updates.

In the UI component file, configure the properties of your UI component. Specify the properties that
users can set by defining them as public properties in a properties block. In the update method of
your class, store the values of the public properties as fields in a struct in the Data property of your
HTML UI component. This gives the HTML source file access to these property values.

In the HTML source file, use the property values to update the appearance of the HTML UI
component. To do so, in the setup function inside of a <script> tag, access the values of the fields
in Data and use them to modify the style properties of your HTML elements.

Enable Response to User Interactions

Users define component callback functions in MATLAB, but these callbacks often listen for a response
to an action performed on an HTML element defined in the HTML source file. So these two files also
need to communicate about user interactions.

In the UI component class file, first create the callback properties of your UI component. Create an
events block with the HasCallbackProperty. When you define an event in this block, MATLAB
creates an associated public callback property for the UI component. For example, if you create an
event named ButtonPushed, this will automatically create a public property for your class named
ButtonPushedFcn.

To execute a user-defined callback function associated with a user interaction, your code must first
recognize when the user interaction has occurred. In the UI component class file, give the HTML UI
component a way to do this. In the setup method, set the Data property of the HTML UI component
to a struct with a field to store information about whether the interaction has occurred. Because
the class file and the HTML source file share this property and its value, the HTML source file can
update the value to communicate the user interaction status to the UI component class. To

12 Developing Classes of UI Component Objects

12-24

accomplish this, in the HTML source file, in the setup function inside of a <script> tag, create an
event listener that listens for the user interaction. When the listener detects the interaction, update
the Data property of the HTML UI component.

After the UI component class file receives the information that a user interaction has occurred, it
must then trigger the event associated with the interaction. Create a class method to do this. In the
class method, first call the built-in notify method to trigger the event you defined. This executes the
user-defined callback function associated with the event. Then, set the Data property of the HTML
component to wait for another interaction. In the setup method of the UI component class file, set
the DataChangedFcn property of the HTML component to the class method you defined. The HTML
UI component executes this method automatically whenever the Data property changes. Therefore,
after the HTML source file updates the Data property to communicate that the interaction has
occurred, this method executes the appropriate callback.

RoundButton Class Implementation
This example demonstrates a typical structure for writing a custom UI component that uses an HTML
UI component. The example shows how to create a custom button component as a subclass of the
ComponentContainer base class. For an example of a custom button component created in App
Designer, see “Create Custom Button with Hover Effect Using HTML” on page 13-43.

The class creates a button with a custom rounded style. It allows users to specify the button color,
text, text color, and response on click.

To define your UI component class, create two files in the same folder on the MATLAB path:

• RoundButton.m — UI component class definition
• RoundButton.html — HTML source file

RoundButton.m Class Definition

RoundButton class Discussion
classdef RoundButton < matlab.ui.componentcontainer.ComponentContainerCreate a custom UI component named

RoundButton by defining a subclass of the
matlab.ui.componentcontainer.Component
Container class.

 properties
 Color {mustBeMember(Color, ...
 {'white','blue','red','green','yellow'})} = 'white'
 FontColor {mustBeMember(FontColor, ...
 {'black','white'})} = 'black'
 Text (1,:) char = 'Button';
 end

Define the Color, FontColor, and Text public
properties for your RoundButton class. These
are properties that the user can set when
creating a RoundButton instance.

For more information on defining properties, see
“Manage Properties of Custom UI Components
Programmatically” on page 12-9.

 properties (Access = private, Transient, NonCopyable)
 HTMLComponent matlab.ui.control.HTML
 end

Define the HTMLComponent private property to
hold the HTML UI component.

 events (HasCallbackProperty, NotifyAccess = protected)
 % Generate a ButtonPushedFcn callback property
 ButtonPushed
 end

Define a ButtonPushed event in an events
block. Specify the HasCallbackProperty for
the events block to automatically generate a
ButtonPushedFcn public property for the class.

 Customize Properties of HTML UI Components

12-25

RoundButton class Discussion
 methods (Access=protected) Create a methods block.
 function setup(comp)
 % Set the initial position of this component
 comp.Position = [100 100 80 40];

 % Create the HTML component
 comp.HTMLComponent = uihtml(comp);
 comp.HTMLComponent.Position = [1 1 comp.Position(3:4)];
 comp.HTMLComponent.HTMLSource = fullfile(pwd,'RoundButton.html');
 comp.HTMLComponent.Data = struct('Clicked',false);
 comp.HTMLComponent.DataChangedFcn = @(s,e)notifyClick(comp);
 end

Define the setup method for your class. Within
the method, set the initial position of your
component relative to its parent container.

Then, create an HTML component by calling the
uihtml function. Set the following properties for
your HTML component:

• Position — the position of the HTML
component relative to the position of the
custom UI component.

• HTMLSource — the source file that contains
the HTML markup for the HTML component.

• Data — a struct with a Clicked field with
value false. Code in the HTML source file
sets this field to true when the user clicks the
HTML component.

• DataChangedFcn — an anonymous function
that calls a class method named
notifyClick. This function runs when the
Data property of the HTML component
changes.

 function update(comp)
 % Update the HTML component data
 comp.HTMLComponent.Data.Color = comp.Color;
 comp.HTMLComponent.Data.FontColor = comp.FontColor;
 comp.HTMLComponent.Data.Text = comp.Text;
 comp.HTMLComponent.Position = [1 1 comp.Position(3:4)];
 end

Define the update method for your class. Within
the method, store the values of the Color,
FontColor, and Text properties as fields in the
Data property of the HTML component. This
enables you to update the attributes of the HTML
button element, and lets the HTML component
listen for when these properties are changed.

 function notifyClick(comp)
 if comp.HTMLComponent.Data.Clicked
 comp.HTMLComponent.Data.Clicked = false;
 drawnow
 notify(comp,'ButtonPushed');
 end
 end

Define the function that runs when the Data
property changes, which is called notifyClick.
The function first checks to see if the Clicked
field of the HTML component data is true. If so,
the function sets the Clicked data field to false
to await the next button click. The function also
fires the ButtonPushed event, which in turn
executes the user-defined ButtonPushedFcn
property.

 end
end

Close the methods block and the class definition.

RoundButton.html Source Definition

HTML Source Discussion
<!DOCTYPE html>
<html>
<head>

Open the <html> tag and the <head> tag.

12 Developing Classes of UI Component Objects

12-26

HTML Source Discussion
<style>
html, body {
 height: 100%;
 text-align: center;
}

button {
 width: 100%;
 height: 100%;
 border-radius: 2em;
 font-size: 1em;
 cursor: pointer;
 border: none;
}

button:focus {
 outline: 0;
}
</style>

Define the style for the HTML content using CSS
markup:

• Set the height of the HTML body to scale to
fill the entire container in which it is
displayed.

• Define the relative size of the button within
the document body, the radius of the button
edges, the font size, the cursor style when
pointing to the button, and the button border
style.

 <script type="text/javascript">
 function setup(htmlComponent) {

Write a setup function inside of a <script> tag
to connect your JavaScript object, called
htmlComponent, to the HTML UI component you
created in MATLAB.

 htmlComponent.addEventListener("DataChanged", function(event) {
 buttonElement = document.getElementById("roundButton");
 buttonElement.style.backgroundColor = htmlComponent.Data.Color;
 buttonElement.innerHTML = htmlComponent.Data.Text;
 buttonElement.style.color = htmlComponent.Data.FontColor;
 });

Add an event listener to the htmlComponent
JavaScript object. This event listener listens for
any change in the Data property of the
HTMLComponent MATLAB object, and then
updates the attributes of the HTML button
element in accordance with the RoundButton
property values.

 button = document.getElementById("roundButton");
 button.addEventListener("click", function(event) {
 htmlComponent.Data.Clicked = true;
 htmlComponent.Data = htmlComponent.Data;
 });

Add an event listener to the HTML button. This
event listener listens for the button element to be
clicked. When a user clicks the button, the
function:

• Updates the Clicked field of the HTML
component data to true

• Explicitly set the Data property of the HTML
component. This notifies the MATLAB HTML
component object to execute the
DataChangedFcn callback.

 }
 </script>
</head>

Close the setup function and the <script> and
<head> tags.

 <body>
 <button id="roundButton"></button>

 </body>

Create a button element in the body of the HTML
document.

</html> Close the <html> tag.

 Customize Properties of HTML UI Components

12-27

Create a RoundButton Instance

After creating and saving RoundButton.m and RoundButton.html, create an instance of the
RoundButton class in a UI figure.

Specify the Color, FontColor, and the ButtonPushedFcn callback properties as name-value
arguments.

fig = uifigure('Position',[200 200 300 300]);
btn = RoundButton(fig, ...
 'Color','red', ...
 'FontColor','white', ...
 'ButtonPushedFcn',@(o,e)disp('Clicked'));

Click the button. The Command Window displays Clicked.

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Functions
uihtml | uifigure

Related Examples
• “Develop Custom UI Components Programmatically” on page 12-2
• “Create HTML File That Can Trigger or Respond to Data Changes” on page 4-23

12 Developing Classes of UI Component Objects

12-28

Create Custom UI Components in App
Designer

• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Define Custom UI Component Startup Tasks in App Designer” on page 13-11
• “Create Public Properties for Custom UI Components in App Designer” on page 13-13
• “Create Callbacks for Custom UI Components in App Designer” on page 13-21
• “Write Property Set Methods for Custom UI Components in App Designer” on page 13-26
• “Modularize Your App by Creating a Custom UI Component” on page 13-31
• “Verify Behavior of Custom UI Components in App Designer” on page 13-36
• “Create Custom UI Component with a Chart in App Designer” on page 13-40
• “Create Custom Button with Hover Effect Using HTML” on page 13-43

13

Create a Simple Custom UI Component in App Designer
In addition to the UI components that MATLAB provides for building apps, you can create custom UI
components to use in your own apps or to share with others. Starting in R2022a, you can
interactively create custom UI components in App Designer.

Some benefits of creating custom UI components include:

• Modularization — Separate the display and code of large apps into independent, maintainable
pieces.

• Reusability — Provide a convenient interface for adding and customizing similar components in
apps.

• Flexibility — Extend the appearance and behavior of existing UI components.

Component Creation Overview
When you design and create a custom UI component, there are two users of your component to
consider: app creators and app users. App creators use your component when building an app,
whereas app users interact with your component when running an app. Because these two types of
users use your component in different ways, there are additional considerations to take into account
when designing a custom component as opposed to designing an app.

To provide a good experience for app creators who use your component to build an app:

• Provide an interface for users to customize the appearance and behavior of the component in an
app by creating public properties.

• Enable users to program a response to interactions with the component by creating public
callbacks.

• Ensure that the component is robust to the different ways in which users can incorporate it into
their apps, and provide feedback, such as descriptive error messages, when a user attempts to use
it in an unintended way.

To provide a good experience for app users who interact with your component in an app:

• Design the component appearance so that users can understand its purpose.
• Program the basic behavior of the component so that it is consistent across all apps that use it.

Learn how to create a custom UI component in App Designer by walking through the process of
creating a slider-spinner UI component that provides a flexible interface to change a numeric value.
When you have completed the process, you will be able to use the slider-spinner component in an App
Designer app in the same way you use existing UI components.

You can either create the slider-spinner component by following the interactive tutorial in the App
Designer environment or by following the steps on this page.

13 Create Custom UI Components in App Designer

13-2

To run the interactive component tutorial in App Designer, open the App Designer Start Page. In the
Custom UI Components section, click Show examples, and then select Interactive Component
Tutorial.

App Designer Component Tutorial Steps

This table provides a quick reference for the App Designer interactive component tutorial.

Step Number Step Instruction
1 Let's build a simple custom UI component that consists of a slider and a

spinner with their values connected together.

Drag a Slider component onto the canvas.
2 Drag a Spinner component onto the canvas.
3 Create a public property named Value to allow app creators to set the

slider-spinner component value when they use the component to build an
app.

Select the component node in the Component Browser and click the
button to add a new public property.

4 Fill out the dialog with the following values and then click OK to create the
property:

Name: Value

Data Type: double

Default Value: 0
5 App Designer has a design view for designing your component and a code

view for programming your component.

Click Code View to begin programming your component.
6 Create a callback function for the slider to respond when a user changes

the slider value.

In the Component Browser, right-click comp.Slider and select
Callbacks > Add ValueChangedFcn callback.

7 When the slider value changes and this callback function is executed,
update the Value property of your component to match the new slider
value.

Replace the callback code with the following:

comp.Value = event.Source.Value;

8 Next, do the same thing for the spinner. Instead of creating a new callback
function, you can reuse the slider callback.

In the Component Browser, right-click comp.Spinner and select
Callbacks > Select existing callback. Then, select the existing callback
for the slider from the dialog.

 Create a Simple Custom UI Component in App Designer

13-3

Step Number Step Instruction
9 Your component's Value property now updates when the value of the

slider or the spinner changes. Next, conversely, update the slider and
spinner value when someone sets your component's Value property
programmatically.

Write the following code to do this in the update function, which executes
every time the value of a public property changes:

comp.Slider.Value = comp.Value;
comp.Spinner.Value = comp.Value;

10 Create a public callback to allow users of your component to program a
response to an interaction in the context of their app. App Designer creates
a public callback when you add an event.

Click on the Events tab and then click the button to add a new event.
11 When you add an event, App Designer creates a public callback of the

same name with Fcn appended. This callback is available when the
component is added to an app.

Specify the name of the event to be ValueChanged.
12 To trigger the ValueChangedFcn callback at the right time, you need to

notify the event whenever you change your component's Value property.

Add the following code to the end of the SliderValueChanged callback:

notify(comp, 'ValueChanged')

13
Click Run to save and run the component to verify the its interactive
behavior.

14 To verify that your component's ValueChangedFcn callback is triggered
when the component value changes, execute the following code in the
MATLAB Command Window:

comp = tutorialComponent;
comp.ValueChangedFcn = @(src,event)disp(src.Value);

15 Congratulations, you just built your first custom UI component!

Click Configure to enable your component to appear in the App
Designer Component Library. You can use the component in your apps or
share it with others.

Create Custom UI Component

To create a custom UI component in App Designer, first open a new blank component. Open the App
Designer Start Page, and in the Custom UI Components section, click Blank Component. Save the
component file as myComponent.mlapp. Then, follow these steps to build the slider-spinner
component with connected values:

1 “Design Component Appearance” on page 13-5 — Lay out your custom component using
existing UI components in App Designer Design View.

13 Create Custom UI Components in App Designer

13-4

2 “Design Component Interface” on page 13-5 — Provide options for an app creator to customize
the appearance and behavior of your custom component to suit the needs of the app. Do this in
two steps:

a “Create and Configure Public Properties” on page 13-5 — Enable the app creator to
specify aspects of the component appearance and behavior in an app.

b “Create and Configure Public Callbacks” on page 13-7 — Enable the app creator to
program a response when an app user interacts with the component in an app.

3 “Verify Component Behavior” on page 13-8 — Ensure your custom component looks and
behaves as intended.

4 “Configure Component for Use in Apps” on page 13-9 — Specify how your custom component
appears in the App Designer Component Library.

Design Component Appearance
Design your custom component appearance in Design View.

To design the slider-spinner appearance, first drag a Slider component from the Component
Library onto the canvas. Then, drag a Spinner component onto the canvas and position it below the
slider.

When you lay out your custom component in Design View, App Designer generates the code that
creates the underlying UI components in the setup function in Code View. This function is run once
when the custom component object is created in an app. If you have additional startup tasks that you
would like to execute once at setup, such as plotting data or initializing default values, you can create
a PostSetupFcn callback for the custom component. For more information, see “Define Custom UI
Component Startup Tasks in App Designer” on page 13-11.

Design Component Interface
Design your custom component interface so that an app creator can specify how the component
appears and behaves within their app. There are two aspects of the component interface to consider:

• Public properties — These are properties of the component that can be set and queried when the
component is added to an app. Create public properties to provide component customization
options and to expose information about the component to an app creator.

• Public callbacks — These are callbacks of the component that can be accessed when the
component is added to an app. Create public callbacks to allow an app creator to program a
response to a specific component interaction in the context of their app.

Create and Configure Public Properties

To add a public property to your custom component, first create the property and specify its default
value, data type, and associated validation functions. Then, write code to connect the property value
and the custom component appearance and behavior. Update the public property value when an app
user interacts with the component, and update the underlying components when an app creator
programmatically sets the public property value.

For the slider-spinner component, create a public property named Value to allow app creators to set
the slider-spinner value when they use the component in app. Select the component node in the

Component Browser and click the button.

 Create a Simple Custom UI Component in App Designer

13-5

When you add a new public property, App Designer opens a dialog box that lets you specify property
details. Fill out the dialog box with these values:

• Name — Enter Value as the property name.
• Data Type — Enter double as the property data type.
• Default Value — Enter 0 as the default property value.

Click OK to create the property.

Once you create the Value public property, write code to link the property to the slider-spinner
component appearance. Navigate to Code View using the button in the upper-right corner of the
canvas.

When you create a custom UI component, App Designer creates a class definition file with
matlab.ui.componentcontainer.ComponentContainer as the superclass. Use the Code View
editor to write code to program your component in this file. Access the custom component object in
your code by using comp.

First, update the Value property whenever an app user interacts with the slider or the spinner.
Perform this update using these steps:

1 Create a callback for the slider component. Right-click comp.Slider in the Component
Browser and select Callbacks > Add ValueChangedFcn callback.

2 Update the Value property within the SliderValueChanged callback function. Replace the
code in the callback function with this code:

13 Create Custom UI Components in App Designer

13-6

comp.Value = event.Source.Value;
3 Assign the same callback function to the spinner component. Right-click comp.Spinner in the

Component Browser and select Callbacks > Select existing callback. Use the dialog box to
assign the SliderValueChanged function to the spinner ValueChangedFcn callback.

At this point, your code updates the slider-spinner Value property whenever the underlying
component values change. Next, conversely, write code to update the underlying spinner and slider
components whenever an app creator sets the slider-spinner Value property. Perform this update
inside the update function of your component code. The update function executes whenever the
value of a public property of the custom component changes, so this ensures that the underlying
spinner and slider values always match the value of the custom component.

Add this code to the update function:

comp.Slider.Value = comp.Value;
comp.Spinner.Value = comp.Value;

For more information about creating and configuring public properties, see “Create Public Properties
for Custom UI Components in App Designer” on page 13-13.

Create and Configure Public Callbacks

Create public callbacks for your custom component to enable app creators to write code in their apps
to respond to specific interactions. To create a public callback, add an event. An event is a notice that
is broadcast when an action occurs. When you add an event for your custom component, App
Designer creates a public callback associated with the event. Then, write code to trigger the event,
which executes the associated public callback.

In the slider-spinner component, create an event named ValueChanged and write code to trigger the
event and execute the associated ValueChangedFcn callback whenever an app user changes the
value of the slider or the spinner in a running app. This lets app creators to use the
ValueChangedFcn callback in their app. For instance, an app creator might write a callback function
to plot some data whenever the app user changes the slider-spinner value.

Use these steps to add and trigger the ValueChanged event:

1
Select the Event–Callback Pairs tab in the Component Browser and click the button.

 Create a Simple Custom UI Component in App Designer

13-7

2 In the Add Event–Public Callback Pair dialog box, enter the event name as ValueChanged, and
click OK. App Designer creates a public callback of the same name with the letters Fcn
appended. So in this case, the public callback is named ValueChangedFcn.

3 Write code to ensure that the callback is executed at the appropriate moment. Do this by calling
the notify function on the component object and specifying the event name. Here, the callback
should be executed when an app user interacts with the slider or the spinner. In the
SliderValueChanged function, add this code:

notify(comp,"ValueChanged")

For more information about creating and executing public callbacks, see “Create Callbacks for
Custom UI Components in App Designer” on page 13-21.

Verify Component Behavior

To see what your component looks like in a running app, save the component and then click Run.
App Designer displays a UI figure window that contains your custom component.

Run the slider-spinner component, and interact with it to verify that it looks and behaves as expected.

13 Create Custom UI Components in App Designer

13-8

Next, verify that the ValueChangedFcn callback is executed when the component value changes.
Create an instance of your component programmatically by specifying the component file name at the
MATLAB Command Window and returning the component object as a variable. Enter this code in the
Command Window to create a slider-spinner component and assign a callback function:

comp = myComponent;
comp.ValueChangedFcn = @(src,event)disp(src.Value);

Interact with the slider and spinner. The value of the custom component is displayed in the Command
Window.

Configure Component for Use in Apps
To use your custom UI component in an App Designer app or to share it for others to use, follow these
steps:

1
In the Designer tab, click Configure for Apps.

2 Fill out the App Designer Custom UI Component Metadata dialog box, and then click OK.
3 In the confirmation dialog box, click Add to Path to add the component and generated

resources folder to the MATLAB path.
4

In the Designer tab, click New and select Blank App.

The component appears in the Component Library of the app, under the category specified in the
dialog box.

Drag a slider-spinner component onto the canvas. You can set public properties of the component
using the Component Browser, and you can assign public callbacks to program the component
behavior in the app.

 Create a Simple Custom UI Component in App Designer

13-9

For more information about configuring and sharing your custom UI component, see “Configure
Custom UI Components for App Designer” on page 12-17.

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Related Examples
• “Create Public Properties for Custom UI Components in App Designer” on page 13-13
• “Create Callbacks for Custom UI Components in App Designer” on page 13-21
• “Configure Custom UI Components for App Designer” on page 12-17

13 Create Custom UI Components in App Designer

13-10

Define Custom UI Component Startup Tasks in App Designer
When you create a custom UI component in App Designer, you and other app creators can use the
component in an app. You can write code to perform one-time startup tasks that executes when an
app containing your component first starts up, but before an app user interacts with the app. Perform
these startup tasks in a PostSetupFcn callback of the custom component object. For example, you
can use a PostSetupFcn callback to initialize a public property for your component or to display
data in a plot or a table.

Component Setup Overview
When you lay out a custom UI component in Design View, App Designer generates code to create
and configure the initial custom component layout and behavior. The code creates the underlying UI
components that make up your custom component and sets properties and callbacks of those
underlying components. App Designer adds this startup code to the setup function of the custom
component class file in Code View. The setup function executes once when an instance of the
custom component is created, such as when an app containing the custom component is run.

If you add a PostSetupFcn callback to your custom UI component, the code in the function is
executed as part of the component setup function, after the setup code generated by App Designer.

Add PostSetupFcn Callback
To write code to perform startup tasks when your custom component is created, add a
PostSetupFcn callback to the component. There are several ways to create a PostSetupFcn
callback.

• Right-click the component node at the top of the Component Browser hierarchy, and select
Callbacks > Add PostSetupFcn callback.

• Select the component node at the top of the Component Browser, and then select the Callbacks
tab. Under Private Callbacks, expand the drop-down list next to PostSetupFcn and select <add
PostSetupFcn callback>.

•
In Code View, in the Editor tab of the toolstrip, click Callback.

•
In Code View, in the Callbacks tab of the Code Browser, click the button.

Example: Timer Component That Performs Startup Tasks
This example shows how to program the startup tasks and behavior of a custom timer component.
The PostSetupFcn creates and configures the underlying timer object that controls the component
behavior.

 Define Custom UI Component Startup Tasks in App Designer

13-11

The component consists of:

• Text that counts down the time remaining on the timer
• Start, Stop, and Reset buttons for app users to interact with the timer
• Public properties named Seconds and Minutes for app creators to specify the length of the timer
• A public callback named TimerEndedFcn for app creators to program a response to the timer

reaching zero

To explore the component code, open the TimerComponent.mlapp file in App Designer.

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Create Public Properties for Custom UI Components in App Designer” on page 13-13
• “Create Callbacks for Custom UI Components in App Designer” on page 13-21

13 Create Custom UI Components in App Designer

13-12

Create Public Properties for Custom UI Components in App
Designer

When you develop a custom UI component in App Designer, create properties to store data and to
allow users to modify the appearance and behavior of the component when using it in an app.
Properties of a custom UI component can be either public or private. Public and private properties
serve different purposes, and the type you create depends on your goal.

• Public properties are accessible when the component is used in an app. Create a public property
to provide customization options that app creators can set when building an app with your
component.

• Private properties are accessible only within your component code. Create a private property to
store data and to share that data between callbacks in your component.

Because public properties can be set and queried by others when they create an app that uses your
component, it is a best practice to validate the values that a public property of your component can
accept.

To add a public property to a component, use these steps:

1 “Create New Public Property” on page 13-13 — Create a robust and user-friendly public
property by initializing and validating the property values.

2 “Configure Public Property” on page 13-16 — Write code to link the public property value to the
custom component appearance and behavior.

3 “Verify Public Property” on page 13-17 — Verify that setting the property programmatically
updates the custom component and that the property appears when the component is used in an
App Designer app.

The example on this page shows how to create, configure, and verify a public property for a custom
UI component that allows users to select a file from their system. The public property Path stores the
path to the file that an app user selects.

To explore the finished FileSelector component in App Designer, see “Full Example: FileSelector
Component” on page 13-19.

Create New Public Property
While building a custom UI component, you can create a new public property in multiple ways,
depending on where in App Designer you are working:

• In the Component Browser, select the top-level component node. Under the Custom UI

Component tab in the Property Inspector, click the button.

 Create Public Properties for Custom UI Components in App Designer

13-13

•
In the Editor tab in Code View, click Property and select Public Property.

•
In the Code Browser in Code View, under the Properties tab, click the button.

When you add a new public property, App Designer opens a dialog box that lets you specify property
details. This table lists the dialog box options.

Option Details
Name The name of the public property.

App creators can use the property name to set and access the
value of the property in an app.

Description A description of what the property does.

The description is inserted as a comment next to the property
definition in Code View.

Data Type The data type of the value that the property stores.

Select a common data type from the drop-down list in the dialog
box, or type any MATLAB data type.

For the public property to appear in the Property Inspector when
an app creator uses your component in App Designer, you must
specify a data type or default value. Only certain data types allow
for in-place property editing in Design View. For a list of these
supported data types, see “Configure Custom UI Components for
App Designer” on page 12-17. You can specify a data type that is
not included in the list, but the app creator will have to set the
property value programmatically in Code View instead of
interactively in the inspector.

Default Value The default value of the public property when the component is
added to an app.

For the public property to appear in the Property Inspector when
an app creator uses your component in App Designer, you must
specify a data type or default value.

Size The size of the data that the property stores.

Specify the size of the data as the number of rows by the number
of columns.

13 Create Custom UI Components in App Designer

13-14

Option Details
Validation Functions The validation functions applied to the property value when the

app creator sets it.

Use validation functions to help app creators avoid unexpected
behavior when using your component and to provide descriptive
error messages when a user specifies an invalid property value.
Some common types of validation include:

• Validating that a numerical property value is within a specific
range

• Validating that a property value is one of a finite set of options
• Validating that a property value is not missing or empty

For a list of the available validation functions and their uses, see
“Property Validation Functions”.

MATLAB Property Attributes The attributes associated with the property.

Property attributes control characteristics like access, data
storage, and visibility of the property. The Access property
attribute is required and is specified as public by default when
you add a new public property.

For a list of property attributes and their uses, see “Property
Attributes”

To edit an existing public property that you have created, select the top-level component node in the

Component Browser, click the button next to the property name, and select Edit. This selection
brings up the Edit Property dialog box with the existing property configurations. You can update any
configurations and click OK to apply the changes.

To create the Path property for the FileSelector component, navigate to the Component

Browser and select the FileSelector node. Then, click the button.

Fill out these fields in the Add Property dialog box:

• Name — Enter Path.
• Data Type — Select string from the drop-down list.
• Validation Functions — Select the mustBeFile validation function from the drop-down list to

validate that the value represents a valid file.
• MATLAB Property Attributes — Select the AbortSet attribute. This selection specifies that

MATLAB does not set the property value if the new value is the same as the old one. Specifying
AbortSet can improve the performance of your component. Because it is possible that an app
creator will program the FileSelector component to perform an expensive operation, such as
processing file data, after an app users selects a new file, this attribute ensures that any code in
an app runs only if the app user selects a new file.

Do not specify a default value for the Path property because the property value depends on the files
on an app user's system.

 Create Public Properties for Custom UI Components in App Designer

13-15

Configure Public Property
After you create a public property, write code to associate the property value with the appearance
and behavior of the custom component. Often, you can do this in two steps:

1 “Update Public Property Value” on page 13-16 — Update the value of the public property when
an app user interacts with the custom component.

2 “Update Underlying Components” on page 13-16 — Update the display or behavior of the
underlying components when an app creator sets the value of the public property.

Update Public Property Value

To update the value of a public property when an app user interacts with the component, create a
callback associated with an underlying UI component, and update the public property value in the
callback function in Code View. You can reference the public property in your code by using the
pattern comp.PublicPropertyName.

In the FileSelector component, update the value of the Path property in response to two
interactions:

• When the user specifies a new file by typing a path to the file in the edit field
• When the user selects a new file interactively by pressing the button

For the edit field interaction, create a ValueChangedFcn callback for the edit field in the
FileSelector component:

1 Right-click the comp.EditField node in the Component Browser and select Callbacks > Add
ValueChangedFcn callback.

2 Add code to the EditFieldValueChanged function in Code View to update the value of the
Path property to align with the path that is displayed in the edit field:

comp.Path = comp.EditField.Value;

For the button interaction, create a ButtonPushedFcn callback for the button in the FileSelector
component:

1 Right-click the comp.Button node in the Component Browser and select Callbacks > Add
ButtonPushedFcn callback.

2 Add code to the ButtonPushed function in Code View to open a file selection dialog box and
then to update the value of the Path property based on the file that the user selects:

[fileName,pathName] = uigetfile("","Select a file");
if ~isequal(fileName,0)
 comp.Path = fullfile(pathName,fileName);
end

Update Underlying Components

To update the display or behavior of the underlying components when an app creator sets the value of
a public property, write code in the update function in Code View. This function executes whenever
the value of a public property of the custom component changes.

In the update function of the FileSelector component, write code to display the value of the Path
property in the edit field:

13 Create Custom UI Components in App Designer

13-16

function update(comp)
 comp.EditField.Value = comp.Path;
end

Verify Public Property
You can verify that a public property appears and behaves as expected in multiple ways:

• Create an instance of the custom component from the MATLAB Command Window and set the
property programmatically.

• Add the custom component to an App Designer app and set the property using the Property
Inspector.

Verify Public Property Programmatically

Create an instance of the custom component by entering the name of the file in the MATLAB
Command Window. Return the component object as a variable and use the variable to set the
property programmatically.

Verify that the Path property is linked to the FileSelector component display by navigating to the
folder where the FileSelector.mlapp file is saved and entering this code into the MATLAB
Command Window:

comp = FileSelector;
comp.Path = "folderIcon.png";

 Create Public Properties for Custom UI Components in App Designer

13-17

The path is displayed in the edit field.

You can also verify that your property validation is working as intended. For example, if you set the
Path property to a nonexistent file, MATLAB detects the invalid file using the mustBeFile validation
function and throws a helpful error.

comp.Path = "myFile.txt";

Error setting property 'Path' of class 'FileSelector'. The following files do not exist: 'myFile.txt'.

Verify Public Property in App

You can also verify that a public property appears and behaves as expected by configuring the custom
component for use in App Designer apps. You can then add the component to an app and interact
with it using the Component Browser.

With the FileSelector.mlapp file open in App Designer, follow these steps to add the component
to an App Designer app.

1
In the Designer tab, click Configure for Apps.

2 Fill out the App Designer Custom UI Component Metadata dialog box, and then click OK.
3 In the confirmation dialog box, click Add to Path to add the component and generated

resources folder to the MATLAB path.

13 Create Custom UI Components in App Designer

13-18

4
In the Designer tab, click New and select Blank App.

5 Drag the file selector component from the Component Library onto the app canvas. When the
component is selected in the Component Browser, the Path property appears in the Property
Inspector.

Note Avoid using your component in an App Designer app while you are actively developing your
component. If you make a change to your component code while the component is being used in an
open App Designer app, you must restart App Designer to see the changes reflected within the app.
For more information, see “Verify Behavior of Custom UI Components in App Designer” on page 13-
36.

Full Example: FileSelector Component
This example shows the full FileSelector custom UI component code created in App Designer. The
component is made up of a button that app users can press to select a file on their system and an edit
field that displays the path to the selected file. The component interface consists of a public property
and a public callback:

• Path — A public property that stores the path to the selected file

 Create Public Properties for Custom UI Components in App Designer

13-19

• PathChangedFcn — A public callback that executes whenever a user selects or enters a new file

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Create Callbacks for Custom UI Components in App Designer” on page 13-21
• “Write Property Set Methods for Custom UI Components in App Designer” on page 13-26

13 Create Custom UI Components in App Designer

13-20

Create Callbacks for Custom UI Components in App Designer
When you develop a custom UI component in App Designer, you can use callbacks to provide options
for customizing the component behavior in an app, or to program your own response to user
interactions in the component code.

To enable an app creator to program a response to an interaction with your custom component in
their app, create a public callback. A public callback is a callback for your component that is
accessible when the component is used in an app. For example, if you create a ValueChangedFcn
public callback for an IP address component, app creators can use this callback to write code to
update their app whenever an app user enters a new IP address.

To program the behavior of your component that does not change, regardless of how the component
is used, create an underlying component callback in your custom component code. These callbacks
are not accessible by an app creator who uses your component in their app. For example, if your
custom component contains a button that always opens a dialog box, create a ButtonPushedFcn
callback for that underlying button component and write code to open the dialog box. App creators
cannot access or change this callback functionality in their own apps.

The example on this page shows how to create and configure a public callback for a custom UI
component that allows users to select a file from their system. The FileSelector component
consists of these elements:

• A button that opens a file selection dialog box
• An edit field that displays the path to the selected file
• A public property named Path that stores the selected file path

Create a public callback named PathChangedFcn for the FileSelector component using these
steps:

1 “Create New Event” on page 13-22 — Add an event to create a public callback.
2 “Notify Event to Execute Callback” on page 13-23 — Write code to execute the

PathChangedFcn callback when an app user interactively selects a new file.
3 “Verify Callback” on page 13-24 — Verify that the callback appears and behaves as expected by

programmatically assigning a callback function in the MATLAB Command Window and by adding
the component to an App Designer app.

To explore and use the finished FileSelector component, see “Full Example: FileSelector
Component” on page 13-25.

Relationship Between Events and Public Callbacks
To add a new public callback for your component, you must create an event. An event is a notice that
is broadcast when an action occurs. When you create an event for your custom component, App

 Create Callbacks for Custom UI Components in App Designer

13-21

Designer automatically creates a public callback associated with the event whose name is the event
name followed by the letters Fcn. You can trigger the event by calling the notify function in
response to a user interaction, which then prompts MATLAB to execute the callback function that the
app creator assigned to the associated public callback.

Create New Event
To create a PathChangedFcn public callback for the FileSelector component, first create a new
event. There are multiple ways to create a new event. Choose the option that best suits your workflow
based on where in App Designer you are currently working:

• In Design View, in the Component Browser, select the top-level component node. Under the

Events–Callback Pairs tab, click the button.
•

In Code View, in the Editor tab of the toolstrip, click Event.
•

In Code View, in the Events tab of the Code Browser, click the button.

Fill out the resulting dialog box with the name of the event and an optional event description:

• Enter PathChanged as the event name. App Designer creates an associated public callback
named PathChangedFcn.

• Specify in the event description that the event is triggered when a user selects a new file. App
Designer adds this text as a comment in the event block in Code View.

You can view the event–public callback pairs for your component by navigating to the Event–
Callback Pairs tab in the Component Browser.

13 Create Custom UI Components in App Designer

13-22

Notify Event to Execute Callback
After you create an event, write code to ensure that the associated public callback is executed at the
appropriate moment. To execute a callback, trigger the associated event in your custom component
code by calling the notify function. Use this syntax:

notify(comp,"EventName")

For any event, you can copy its associated notify code from one of multiple locations within App
Designer:

• In the Code Browser, in the Events tab, right-click the event name and select Copy Code to
Trigger Event.

• In the Component Browser, in the Event–Callback Pairs tab of the main component node, click

the button next to the event name and select Copy Code to Trigger Event.

In general, a public callback should be executed when an app user performs a specific interaction,
such as pushing a button or typing in an edit field. Therefore, you will often add the notify code to
an underlying component callback function.

In the code for the FileSelector component, execute the PathChangedFcn callback whenever an
app user clicks the button or edits the file path to select a new file. To do this, trigger the
PathChanged event in two locations:

• In the ButtonPushedFcn callback for the button
• In the ValueChangedFcn callback for the edit field

Add this code to the end of each of the callback functions:

notify(comp,"PathChanged")

 Create Callbacks for Custom UI Components in App Designer

13-23

If an app that uses your component needs access to additional information about a user interaction
when the interaction occurs, you can optionally define custom event data and specify the data when
you trigger the event. For more information, see “Define Custom Event Data”.

Verify Callback
You can verify that a public callback behaves as expected in multiple ways:

• Create an instance of the custom component from the MATLAB Command Window and assign a
callback function programmatically.

• Add the custom component to an App Designer app and assign a callback function interactively.

Verify Callback Programmatically

Save the FileSelector component as FileSelector.mlapp in your current folder, and then
create a FileSelector object by entering this command into the Command Window:

comp = FileSelector;

Assign a PathChangedFcn callback to the component.

comp.PathChangedFcn = @(src,event)disp("File changed");

Click the button and select a file using the dialog box. The text "File Changed" displays in the
Command Window.

Verify Callback in App

With the FileSelector.mlapp file open in App Designer, follow these steps to add the component
to an App Designer app and access the public callback:

1
In the Designer tab, click Configure for Apps.

2 Fill out the App Designer Custom UI Component Metadata dialog box, and then click OK.
3 In the confirmation dialog box, click Add to Path to add the component and generated

resources folder to the MATLAB path.
4

In the Designer tab, click New and select Blank App.
5 Drag the file selector component from the Component Library onto the app canvas. When the

component is selected in the Component Browser, the PathChangedFcn callback appears in
the Callbacks tab of the Property Inspector.

13 Create Custom UI Components in App Designer

13-24

Note Avoid using your component in an App Designer app while you are actively developing your
component. If you make a change to your component code while the component is being used in an
open App Designer app, you must restart App Designer to see the changes reflected within the app.
For more information, see “Verify Behavior of Custom UI Components in App Designer” on page 13-
36.

Full Example: FileSelector Component
This example shows the full FileSelector custom UI component code created in App Designer. The
component is made up of a button that app users can press to select a file on their system and an edit
field that displays the path to the selected file. The component interface consists of a public property
and a public callback:

• Path — A public property that stores the path to the selected file
• PathChangedFcn — A public callback that executes whenever a user selects or enters a new file

See Also
Classes
matlab.ui.componentcontainer.ComponentContainer

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Define Custom Event Data”
• “Configure Custom UI Components for App Designer” on page 12-17

 Create Callbacks for Custom UI Components in App Designer

13-25

Write Property Set Methods for Custom UI Components in App
Designer

When you create a public property for a custom UI component, one step involves writing code to
update the underlying components and graphics objects within your custom component whenever the
value of the public property changes. In general, perform this step by writing code in the component
update function. MATLAB calls the update function only when necessary, which can result in
performance improvements over writing custom code to perform a similar purpose. For more
information about updating properties using the update function, see “Create Public Properties for
Custom UI Components in App Designer” on page 13-13.

However, you might want to perform certain tasks when one specific property is updated but not
when other properties are updated. Because the update function executes whenever the value of any
public property changes, you can instead write code to perform these tasks when a specific property
changes by defining a set method for that property.

Consider writing a property set method when you want to:

• Perform custom property validation.
• Throw a custom error when the property is set incorrectly.
• Process the property value before storing it.

This example shows how to validate a public property of a custom IP address UI component by
writing a set method.

IP Address Component Overview
This example IP address component accepts input formatted using either the IPv4 or IPv6 protocol.
The protocol determines how the component is displayed:

• IPv4 — The component contains four numeric edit fields, each with a value between 0 and 255.
• IPv6 — The component contains eight text edit fields, each with four characters representing

hexadecimal digits.

The IP address component interface consists of:

• A public property named Address to store the value of the IP address
• A public property named Protocol to specify the IP address protocol
• A public callback named AddressChangedFcn that executes when an app user changes the IP

address by typing in an edit field

13 Create Custom UI Components in App Designer

13-26

Because the Address property can store either a four-element numeric vector (when the protocol is
IPv4) or an eight-element cell array (when the protocol is IPv6), use custom validation logic in a
property set method to check whether the Address value is valid.

To view the full IPAddress component code in App Designer, enter this command in the MATLAB®
Command Window:

openExample('matlab/IPAddressCustomComponentExample');

Create a Property Set Method
To create a new property set method for the Address property of the IP address component, use
these steps:

1
Create a new public function. In Code View, in the Editor tab, select Function > Public
Function.

2 In the methods block that contains the new function, delete the text (Access = public).
Property set methods must be added in a methods block with no attributes. This deletion does
not change the functionality of the methods block because the default value of the Access
attribute is public. For more information, see “Property Set Methods”.

3 Replace the function definition that App Designer creates with this code:

function set.Address(comp,val)
% Write property validation code here
end

The set.Address function executes whenever an app creator sets the value of the Address
public property.

For more information about

Perform Custom Property Validation
Write code in the set.Address function to verify that the new property value follows the expected
format:

• If the protocol is IPv4, check that the app creator set the property to a vector of four integers
between 0 and 255.

• If the protocol is IPv6, check that the app creator set the property to a cell array of eight
character vectors, where each character vector represents four hexadecimal digits.

In each case, if the new value is not in the expected format, throw a helpful error to inform the app
creator what value the property expects. Finally, set the Address property of the component to the
new property value.

Add this code to the body of the set.Address function:
switch comp.Protocol
 % Validate IPv4 address
 case "IPv4"
 if length(val) ~= 4
 error("IPv4 address must have four fields.")
 end
 mustBeInRange(val,0,255)

 Write Property Set Methods for Custom UI Components in App Designer

13-27

 % Validate IPv6 address
 case "IPv6"
 if length(val) ~= 8
 error("IPv6 address must have eight fields.")
 end

 if ~isequal(cellfun('length',val),repmat(4,1,8))
 error("Specify IPv6 field as a four-digit hexadecimal number.")
 end

 try
 hex2dec(val);
 catch
 error("Specify IPv6 field as a four-digit hexadecimal number.")
 end
end
comp.Address = val;

Verify Property Validation Behavior
After you have finished developing the IPAddress component, verify the property validation
behavior by creating a component object and setting the Address property from the MATLAB
Command Window.

Navigate to the folder where the IPAddress.mlapp file is saved. Create an IP address component,
specify its position, and return the component object as comp. By default, the component is created
using the IPv4 protocol.

comp = IPAddress(Position=[50 100 420 31]);

13 Create Custom UI Components in App Designer

13-28

Try to set the Address property to a scalar value. An error displays.

comp.Address = 10;

Error using IPAddress/set.Address
IPv4 address must have four fields.

Change the component to an IPv6 address component.

comp.Protocol = "IPv6";

 Write Property Set Methods for Custom UI Components in App Designer

13-29

Try to set one field of the IP address to a value that does not represent a four-digit hexadecimal
number.

comp.Address{1} = '123h';

Error using IPAddress/set.Address
Specify IPv6 field as a four-digit hexadecimal number.

See Also

Related Examples
• “Create Public Properties for Custom UI Components in App Designer” on page 13-13
• “Verify Behavior of Custom UI Components in App Designer” on page 13-36
• “Property Set Methods”

13 Create Custom UI Components in App Designer

13-30

Modularize Your App by Creating a Custom UI Component
As the size and complexity of an app increases, modularizing the app can help organize and manage
the code. One modularization method is to separate out self-contained portions of your app layout
with common functionality as custom UI components.

Some benefits of this method include:

• Reusability — You can reuse a custom UI component within a single app or across multiple apps
with minimal effort.

• Maintainability — You can reduce duplicate code by componentizing pieces of your app layout
that perform similar functions.

• Scalability — You can more easily extend app functionality when your code is organized into
multiple self-contained portions.

Starting in R2022a, you can use App Designer to create custom UI components, and then use those
components in your apps. For more information, see “Create a Simple Custom UI Component in App
Designer” on page 13-2.

Example Overview

This example explores an app that allows users to store and modify information about their lab
procedures. An app user can update the status or date of a procedure, import data associated with a
procedure, and order the procedures based on their titles, statuses, or dates.

 Modularize Your App by Creating a Custom UI Component

13-31

The example includes two different ways to create the app in App Designer:

1. As a self-contained app with all layout and behavior code contained in a single app file

2. As a modular app where each lab procedure in the app is represented by a LabProcedure object,
which is created as a custom UI component in App Designer

The example contains these files:

13 Create Custom UI Components in App Designer

13-32

• LabProcedureApp_WithoutComponent.mlapp — Self-contained app file
• LabProcedure.mlapp — Custom UI component file
• LabProcedureApp_WithComponent.mlapp — Modular app file

These steps describe how to take the self-contained app and make it more modular by creating and
using the LabProcedure custom UI component.

Create the Custom UI Component

To modularize an app by creating a custom UI component, first identify the portions of your app that
can be extracted to a separate component file. For example, there are certain characteristics that
every lab procedure in the app has in common. These aspects are captured in the LabProcedure
custom UI component.

To explore the component code, open the LabProcedure.mlapp file in App Designer.

Lay Out Component

In Design View, lay out the LabProcedure component by adding the features that every lab
procedure in the app has in common:

• A label for the lab procedure title
• A status drop-down component with the options Not started, Running, Succeeded, and

Failed, and a status label
• A date picker component and a date label
• A button to import data
• A button to view data

Program Underlying Component Behavior

In Code View, program the behavior that every lab procedure in the app has in common by adding
underlying component callbacks. For example, add a ButtonPushedFcn callback to the Import
Data button that allows app users to select a file when they click the button.

Create Public Properties

The app needs access to certain information about each lab procedure. For example, to order the
procedures by status, the app needs access to the statuses. Provide this access by creating public
properties.

Create these public properties for the component:

• Title

 Modularize Your App by Creating a Custom UI Component

13-33

• Status
• Date

Then, write code to associate the properties with the LabProcedure component appearance and
behavior.

For more information, see “Create Public Properties for Custom UI Components in App Designer” on
page 13-13.

Create Public Callbacks

The app needs to execute a response when a user interacts with a lab procedure. For example, to
update the background color of the procedure based on its status, the app needs to execute a
response to an app user changing the status in the drop-down list. Provide the ability for an app
creator to program a response to an interaction in the context of the app by creating event–public
callback pairs.

Create events with these associated public callbacks for the LabProcedure component:

• StatusChangedFcn
• DateChangedFcn

Then, write code to trigger the event and execute the callback when the drop-down component value
changes.

For more information, see “Create Callbacks for Custom UI Components in App Designer” on page
13-21.

Configure Component for Use in Apps

To add the LabProcedure component to the Component Library, click the Configure for Apps
button in the Designer tab and fill out the App Designer Custom UI Component Metadata dialog box.

For more information, see “Configure Custom UI Components for App Designer” on page 12-17.

Use the Custom UI Component in Your App

After you create and configure your custom UI component, incorporate the component into your app.

To explore the app code that uses the LabProcedure component, open the
LabProcedureApp_WithComponent.mlapp file in App Designer.

Lay Out App

Replace the portions of the app layout that represent a lab procedure with LabProcedure
components. Under the Example Components (Custom) section of the Component Library, drag
the LabProcedure components onto the app canvas.

Use the Property Inspector to customize the appearance of each of the procedures in the app. For
example, update the Title property of each lab procedure.

Update App Code

Update your app code to refer to the LabProcedure components and to query and set their public
properties when needed.

13 Create Custom UI Components in App Designer

13-34

For example, the original example app contains a helper function named updateBackgroundColor.
Update this helper function code to change the background color of the LabProcedure component
when its status changes. Because the LabProcedure component has a Status public property and
an inherited BackgroundColor public property, the updated helper function code is simple and easy
to read:

function updateBackgroundColor(app,lp)
 switch lp.Status
 case "Not started"
 lp.BackgroundColor = [0.94 0.94 0.94];
 case "Running"
 lp.BackgroundColor = [0.76 0.84 0.87];
 case "Succeeded"
 lp.BackgroundColor = [0.75 0.87 0.75];
 case "Failed"
 lp.BackgroundColor = [0.87 0.76 0.75];
 end
end

Add Component Callbacks

Add a StatusChangedFcn callback to each LabProcedure component by right-clicking the
component and selecting Callbacks > Add StatusChangedFcn callback. Call the
updateBackgroundColor and updateProcedureOrder helper functions to update the app when
an app user changes the status of a lab procedure.

To run the app, click Run.

See Also

Related Examples
• “Organize App Data Using MATLAB Classes” on page 8-2
• “Create Public Properties for Custom UI Components in App Designer” on page 13-13
• “Create Callbacks for Custom UI Components in App Designer” on page 13-21

 Modularize Your App by Creating a Custom UI Component

13-35

Verify Behavior of Custom UI Components in App Designer
Starting in R2022a, you can create custom UI components interactively in App Designer. For an
example of how to use App Designer to create a slider-spinner component with linked values, see
“Create a Simple Custom UI Component in App Designer” on page 13-2.

While you are developing your custom UI component in App Designer, there are multiple ways to
verify that your component works as you expect.

• “Run Component” on page 13-36 — Use this method to run your code to check for errors and to
view the component in a UI figure window.

• “Create Component from Command Window” on page 13-36 — Use this method to verify the
public properties and callbacks of your component.

• “Add Component to App” on page 13-38 — Use this method only when you are done developing
and debugging your component code, to view your component in an App Designer app.

Run Component

At any point in the development process, you can run your component code by clicking Run. App
Designer creates a UI figure window that contains your custom UI component.

Run your component while you are actively developing your custom UI component to:

• Check that your component is created without errors.
• Debug your component code using the debugger.
• View your component layout in a running app.
• Verify the behavior of underlying component callbacks.

For example, while you are developing a slider-spinner component with linked values, you can run the
component to verify that moving the slider thumb also changes the spinner value.

Create Component from Command Window
When your component code runs without errors and you are ready to verify the behavior of public
properties and callbacks, create the component from the MATLAB Command Window. Use this
method to:

• Verify how your component responds when a public property is set.
• Assign a callback to your component and verify that it executes in response to an interaction.

13 Create Custom UI Components in App Designer

13-36

To create the component from the Command Window, add the folder that contains your component
MLAPP file to the MATLAB path. Enter the component name and return the component object as a
variable:

comp = ComponentFileName

You can then set public properties and assign callbacks to the component object.

For example, if you have created a slider-spinner component by following the steps in “Create a
Simple Custom UI Component in App Designer” on page 13-2 and saved the component file as
SliderSpinner.mlapp, you can verify the property and callback behavior programmatically.

To set public properties during component creation, pass the properties as name-value arguments.
Create the component and set the Value property using a name-value argument:

comp = SliderSpinner(Value=77);

To set the value of public properties after component creation, use dot notation. Change the Value
property of the comp object, and verify that the slider and spinner components update to reflect the
new value:

comp.Value = 22.5;

 Verify Behavior of Custom UI Components in App Designer

13-37

Assign a ValueChangedFcn callback that displays the value in the MATLAB Command Window.

comp.ValueChangedFcn = @(src,event)disp(src.Value);

Move the thumb on the slider and change the spinner value to verify the callback behavior.

Add Component to App
Once you are done debugging and verifying the behavior of specifying properties and callbacks for
your component, you can add the component to an App Designer app. Use this method when the
development of your component is complete to view the component from the point of view of an app
creator who uses the component.

Note Avoid using your component in an App Designer app to debug and verify the component
behavior while you are actively developing your component. If you make a change to your component
code while the component is being used in an open App Designer app, you must restart App Designer
to see the changes reflected within the app.

To view your component in an App Designer app, open the component file in App Designer and follow
these steps:

13 Create Custom UI Components in App Designer

13-38

1
In the Designer tab, click Configure for Apps.

2 Fill out the App Designer Custom UI Component Metadata dialog box, and then click OK.
3 In the confirmation dialog box, click Add to Path to add the component and generated

resources folder to the MATLAB path.
4

In the Designer tab, click New and select Blank App.
5 Drag the component from the Component Library onto the app canvas.

For more information, see “Configure Custom UI Components for App Designer” on page 12-17.

See Also

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Debug MATLAB Code Files”

 Verify Behavior of Custom UI Components in App Designer

13-39

Create Custom UI Component with a Chart in App Designer
This example shows how to incorporate a chart into your custom UI component. App creators can use
this component to let app users interactively change the display of bubble chart data. The component
interface consists of:

• Public properties to specify data to plot in the bubble chart, such as XData, YData, and
SizeData

• Public properties to configure the bubble chart display, such as XLabel, YLabel, and
ShowLegend

• Public properties to configure the user interface controls, such as ShowSizeUI and
ShowTransparencyUI

• Public callbacks BubbleSizeChangedFcn and BubbleTransparencyChangedFcn that execute
when an app user interacts with the size and transparency controls in an app

To explore the custom component code, open the InteractiveBubbleChart.mlapp file in App
Designer.

To verify the custom component behavior, first open a new script file and create some random data to
plot.

x = 1:20;
y = rand(1,20);
bsize = rand(1,20);

Add this code to create an InteractiveBubbleChart object programmatically and specify the
data-related public properties as name-value arguments.

comp = InteractiveBubbleChart(XData=x,YData=y,SizeData=bsize);

13 Create Custom UI Components in App Designer

13-40

Update the component to show a legend for the plot, and define a callback function that hides the
legend when the bubble sizes are large by adding this code to the file. Run the code and interact with
the component to see the behavior.

comp.ShowLegend = true;
comp.BubbleSizeChangedFcn = @toggleLegend;

function toggleLegend(src,event)
 if src.BubbleSize == "Large"
 src.ShowLegend = false;
 else
 src.ShowLegend = true;
 end
end

 Create Custom UI Component with a Chart in App Designer

13-41

See Also

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Verify Behavior of Custom UI Components in App Designer” on page 13-36

13 Create Custom UI Components in App Designer

13-42

Create Custom Button with Hover Effect Using HTML
This example shows how to create a custom button component with a hover effect in App Designer by
using an HTML UI component.

App creators can add this button to their apps and customize its appearance and behavior. The
component interface consists of:

• Public properties FontColor and Text to customize the button appearance
• Public callback ButtonPushedFcn that executes when an app user pushes the button in an app

The HoverButton component appearance and hover effect are defined using HTML in the
Button.html source file. The component interface and behavior, including its public properties and
callback, are defined in the HoverButton.mlapp file in App Designer.

The underlying component in the HoverButton.mlapp file is an HTML UI component with its
HTMLSource property specified as the Button.html file. The two files communicate with each other
using the Data property and DataChanged event, which are synchronized between the HTML UI
component in MATLAB® and the htmlComponent JavaScript® object in the HTML source file.

To verify the custom component behavior, create a HoverButton object programmatically in the
MATLAB Command Window. Modify the default button text by specifying the Text property as a
name-value argument. Hover over the button to see the hover effect.

comp = HoverButton(Text="Click me");

 Create Custom Button with Hover Effect Using HTML

13-43

Update the button color to black and the font color to white.

comp.BackgroundColor = "black";
comp.FontColor = "white";

13 Create Custom UI Components in App Designer

13-44

Create a callback function that displays text in the Command Window when a user pushes the button.

comp.ButtonPushedFcn = @(src,event)disp("Button pushed");

Click the button. The text "Button pushed" displays.

See Also
uihtml

Related Examples
• “Create a Simple Custom UI Component in App Designer” on page 13-2
• “Customize Properties of HTML UI Components” on page 12-24
• “Create HTML File That Can Trigger or Respond to Data Changes” on page 4-23

 Create Custom Button with Hover Effect Using HTML

13-45

Transition or Maintain figure-Based
Apps

• “Update figure-Based Apps to Use uifigure” on page 14-2
• “Update App Figure and Containers” on page 14-7
• “Update UIControl Objects and Callbacks” on page 14-11
• “Update Dialog Boxes” on page 14-18

14

Update figure-Based Apps to Use uifigure
In this section...
“Overview for Updating Your App” on page 14-2
“Capabilities Only Available with UI Figures” on page 14-2
“Differences Between figure-Based and uifigure-Based Apps” on page 14-3

MATLAB provides two functions to create a figure window: figure and uifigure. While both of
these functions create a Figure object, there are some differences in the way that this object is
configured and the capabilities it supports. Figures created using the uifigure function are
configured primarily for app building, whereas figures created using the figure function are
configured primarily for data exploration and visualization.

The uifigure function is the recommended function to use when building new apps
programmatically, and is the function that App Designer uses to create apps. The figure function
will continue to be supported, but there are many new app building capabilities that can be used only
with UI figures. This page provides an overview of the differences between Figure objects created
using the figure function and the uifigure function, and information about how to update your
app to take advantage of the uifigure-based app building capabilities.

Overview for Updating Your App
To update your figure-based app to use uifigure and take advantage of the additional capabilities
in UI figures, follow these steps:

1 “Update App Figure and Containers” on page 14-7 — Replace calls to figure with uifigure,
and update the properties of the Figure object and other app containers, such as Panel and
TabGroup objects.

2 “Update UIControl Objects and Callbacks” on page 14-11 — Replace calls to uicontrol with
analogous UI component functions, and update component properties and callbacks.

3 “Update Dialog Boxes” on page 14-18 — Replace calls to dialog box functions such as
errordlg and warndlg with dialog box functions configured for app building such as uialert.

Capabilities Only Available with UI Figures
Some benefits of updating your app to use the uifigure function include:

• Additional component types — UI figures support additional modern app building components,
such as:

• Trees
• Spinners
• Hyperlinks
• Instrumentation components such as gauges and switches
• HTML UI components that let you embed third-party visualizations in your app

• Modern layout and resize options — UI figures support grid layout managers and component
auto-resize behavior as an alternative to manually specifying the Position property and writing
resize code in a SizeChangedFcn callback. Using these alternatives can greatly simplify app
layout code.

14 Transition or Maintain figure-Based Apps

14-2

• Additional capabilities for existing components — Components in UI figures support
additional customization options, including:

• Making containers scrollable
• Styling individual table cells to change the color and font, and to add icons and format text
• Displaying table array data in table UI components

To see a list of all components supported in uifigure-based apps, see “App Building Components”
on page 4-2.

Differences Between figure-Based and uifigure-Based Apps
The major differences between figure-based apps and uifigure-based apps are due to differences
in the underlying Figure object configuration and unsupported functionality. Understanding these
differences will help you update your figure-based app to use uifigure.

Differences in Default Configuration

Because figures created using the uifigure function are configured for app building instead of data
exploration, there are some differences in the default configuration of those Figure objects when
compared to figures created using the figure function. This table lists the major differences.

Category figure Configuration uifigure
Configuration

Explanation of
Difference

Menu and toolbar The figure window has a
default menu and
toolbar with common
data exploration
functionality.

The UI figure window
does not have a default
menu and toolbar.

The functionality that
the menu and toolbar
provide is less relevant
for app building than for
data exploration. You
can create your own
custom menu and
toolbar for the apps you
create by using the
uimenu and
uitoolbar functions.

 Update figure-Based Apps to Use uifigure

14-3

Category figure Configuration uifigure
Configuration

Explanation of
Difference

HandleVisibility
value

The
HandleVisibility of
the figure is 'on' by
default.

The
HandleVisibility of
the UI figure is 'off'
by default.

The value of the
HandleVisibility
property controls
whether the figure or
the objects it contains
can become the current
object (for example,
using gcf or gca).
Many graphics
functions implicitly use
gcf or gca to
determine the target for
operations such as
plotting data. The
HandleVisibility of
a UI figure is 'off' by
default so that functions
do not make unwanted
changes to the user
interface.

Resize behavior Resizing the figure
window has no effect on
the size of controls and
containers such as
UIControl, Table,
and Panel objects by
default.

The UI figure has a
property named
AutoResizeChildren
that is set to 'on' by
default. When
AutoResizeChildren
is 'on', MATLAB
automatically resizes
objects in the UI figure
window whenever the
UI figure window is
resized. You can set
AutoResizeChildren
to 'off' to disable this
resize behavior.

Resizing UI components
when a user resizes a
UI figure window
enables app use at any
window size. The auto-
resize behavior in UI
figures provides a
lightweight default
behavior in addition to
other resize
management options
such as grid layout
managers.

14 Transition or Maintain figure-Based Apps

14-4

Category figure Configuration uifigure
Configuration

Explanation of
Difference

Container location, size,
and units

By default, Panel,
ButtonGroup, and
TabGroup objects
parented to the figure
have Units set to
'normalized' and
occupy the full size of
the figure window.

All containers and UI
components parented to
the UI figure have a set
default location and
size, specified in pixel
units.

Using pixel units to
manually specify the
position of containers
and UI components
provides the most
control over your app
layout. If you want to
automatically resize
containers or
components based on
the size of their parent
in a UI figure, create a
grid layout manager
using the
uigridlayout
function.

Unsupported Functionality in UI Figures

As of R2022a, some functionality that is supported in figures created using the figure function is not
supported in figures created using the uifigure function. This table lists common scenarios and
coding patterns that require extra steps or manual code changes when updating your apps to use
uifigure.

Category Not Supported Suggested Actions
Controls created using
uicontrol

User interface controls created
using the uicontrol function
are not supported in figures
created using the uifigure
function.

Update your app to use the
corresponding function to
create a UI component in a
uifigure-based app. For
example, use the uibutton
function to create a push
button.

For more information, see
“Update UIControl Objects and
Callbacks” on page 14-11.

Menu and toolbar Figures created using the
uifigure function do not have
the option to specify MenuBar
and ToolBar properties. The
default menu and toolbar in
figures created using the
figure function is not
supported.

Recreate the relevant behavior
or design your own custom
menu and toolbar by using the
uimenu and uitoolbar
functions.

 Update figure-Based Apps to Use uifigure

14-5

Category Not Supported Suggested Actions
Container border properties Certain options for configuring

Panel and ButtonGroup
objects are available only when
the object is parented to a
figure created using the figure
function:

• Specifying the
BorderWidth,
HighlightColor, and
ShadowColor properties

• Specifying the BorderType
property as 'etchedin',
'etchedout',
'beveledin', or
'beveledout'

• Specifying the
TitlePosition property as
'leftbottom',
'centerbottom', or
'rightbottom'

Determine if this functionality is
critical to your app before
updating your app to use
uifigure. There is no
workaround in uifigure-based
apps.

Modal dialog boxes The 'modal' option for
errordlg, warndlg, helpdlg,
msgbox, and waitbar has no
effect when the dialog box is
created for a uifigure-based
app.

Replace calls to these functions
with dialog box functions such
as uialert, uiconfirm, and
uiprogressdlg. These dialog
boxes are created for use in
uifigure-based apps and
support modal options.

For more information, see
“Update Dialog Boxes” on page
14-18.

See Also

Related Examples
• “Update App Figure and Containers” on page 14-7
• “Update UIControl Objects and Callbacks” on page 14-11
• “Update Dialog Boxes” on page 14-18

14 Transition or Maintain figure-Based Apps

14-6

Update App Figure and Containers
MATLAB provides two functions to create a figure window: figure and uifigure. The uifigure
function is the recommended function to use when building new apps programmatically, and is the
function that App Designer uses to create apps. The figure function will continue to be supported,
but there are many new app building capabilities that can be used only with UI figures.

The first step in updating an app that uses the figure and uicontrol functions is to update your
app figure and containers. You can do this by replacing calls to figure with uifigure and then
updating your container layout. Most UI containers can be parented to a figure created using either
the figure or the uifigure function, and so this step often requires minimal updates to your code.

Replace Calls to figure with uifigure
To transition your app to use modern app building functionality, first replace all calls to the figure
function in your app code with calls to the uifigure function:

fig = uifigure;

Specify Target Object

After updating the figure creation function calls, if you plot data or create objects in your app without
explicitly specifying the target object for the operation, running your code can create additional,
unexpected figure windows. To address this behavior, further update your app code using one of
these options:

• Specify the target or parent object in function calls — This is the best practice to avoid
unexpected behavior. Most app building and graphics functions have an option for specifying the
parent or target. For example, this code creates a panel in a UI figure by returning the Figure
object as a variable and then providing that variable as the first input to the uipanel function.

fig = uifigure;
pnl = uipanel(fig);

• Set the HandleVisibility property value of the UI figure to 'callback' — Use this option
when your code that relies on objects in your app becoming the current object is invoked only
from within callback functions in your app. When HandleVisibility is 'callback', the
Figure object is visible only from within callbacks or functions invoked by callbacks, and not from
within functions invoked from the Command Window.

• Set the HandleVisibility property value of the UI figure to 'on' — Use this option to specify
that the UI figure behavior is the same as the default behavior for figures created with the
figure function. This option is not recommended because it can result in unexpected changes to
the app UI.

Adjust Container Positions
Objects such as Panel, TabGroup, and ButtonGroup objects can be parented to figures created
using either the figure or uifigure function. In general, these objects behave the same way in a
uifigure-based app as they do in a figure-based app. However, some container objects have
differences in default Position and Units properties.

If your app contains panels, tab groups, or button groups that are mispositioned after you transition
to using the uifigure function, you have multiple options to update your code:

 Update App Figure and Containers

14-7

• “Use a Grid Layout Manager” on page 14-8 — Use this option if you want to refactor your app
layout using modern layout tools. You can use a grid layout manager to align and specify the resize
behavior of UI components by laying them out in a grid, which can greatly simplify your layout
and resize code.

• “Specify Container Positions” on page 14-9 — Use this option if you want to quickly update your
positioning code or if you want to continue to manage the layout of your app using the Position
property and SizeChangedFcn callbacks.

Use a Grid Layout Manager

To manage your app layout and resize behavior relative to the size of the figure window, use a grid
layout manager. Create a grid layout manager in your UI figure by using the uigridlayout function,
and parent your app components and containers to the grid layout manager. For more information
about using a grid layout manager to lay out your app, see “Lay Out Apps Programmatically” on page
10-2.

This table shows an example of a figure-based app with two panels laid out using the Position
property, and the updated uifigure-based app laid out using a grid layout manager.

Code App
Panels in a figure-based app, laid out using the
Position property

f = figure;
f.Position = [500 500 450 300];

p1 = uipanel(f);
p1.Position = [0 0 0.5 1];
p1.BackgroundColor = "red";

p2 = uipanel(f);
p2.Position = [0.5 0 0.5 1];
p2.BackgroundColor = "blue";

14 Transition or Maintain figure-Based Apps

14-8

Code App
Panels in a uifigure-based app, laid out using a
grid layout manager

f = uifigure;
f.Position = [500 500 450 300];

gl = uigridlayout(f,[1 2]);
gl.Padding = [0 0 0 0];
gl.ColumnSpacing = 0;

p1 = uipanel(gl);
p1.Layout.Row = 1;
p1.Layout.Column = 1;
p1.BackgroundColor = "red";

p2 = uipanel(gl);
p2.Layout.Row = 1;
p2.Layout.Column = 2;
p2.BackgroundColor = "blue";

Specify Container Positions

Alternatively, you can continue to use the Position property to lay out your app. While Panel,
TabGroup, and ButtonGroup objects that are parented to a figure created using the figure
function use normalized units for their Position by default, these containers in a UI figure use pixel
units by default instead. Pixel units are recommended for app building because most MATLAB app
building functionality measures distances in pixels.

Follow these steps to update the property values of the Panel, TabGroup, and ButtonGroup objects
in your app to use pixel units:

1 In your figure-based app, after laying out the object, set the value of its Units property to
"pixels", and then query the value of its Position property.

For example, this code creates two panels laid out using normalized units, converts the units to
pixels, and displays the corresponding pixel position values.

f = figure;
f.Position = [500 500 450 300];

p1 = uipanel(f);
p1.Position = [0 0 0.5 1];
p1.BackgroundColor = "red";

p2 = uipanel(f);
p2.Position = [0.5 0 0.5 1];
p2.BackgroundColor = "blue";

p1.Units = "pixels";
p2.Units = "pixels";

p1PixelPosition = p1.Position
p2PixelPosition = p2.Position

p1PixelPosition =

 Update App Figure and Containers

14-9

 1 1 225 300

p2PixelPosition =

 226 1 225 300
2 In your uifigure-based app, set the Position property of each object to the equivalent pixel-

based position.

f = uifigure;
f.Position = [500 500 450 300];

p1 = uipanel(f);
p1.Position = [1 1 225 300];
p1.BackgroundColor = "red";

p2 = uipanel(f);
p2.Position = [226 1 225 300];
p2.BackgroundColor = "blue";

See Also

Related Examples
• “Update figure-Based Apps to Use uifigure” on page 14-2
• “Update UIControl Objects and Callbacks” on page 14-11
• “Update Dialog Boxes” on page 14-18

14 Transition or Maintain figure-Based Apps

14-10

Update UIControl Objects and Callbacks
In apps created using the uifigure function, add UI components to your app using component
functions such as uibutton and uidropdown. Creating apps using the figure and uicontrol
functions will continue to be supported. However, there are benefits to using UI components in a
uifigure-based app over UIControl objects in a figure-based app. For example, these are some
functionalities that exist only in uifigure-based apps:

• New component types, such as trees, hyperlinks, and instrumentation components
• Layout tools to configure your app layout, such as grid layout managers
• Additional component customization options, such as component properties that control text

alignment and component placeholder text

To take advantage of these benefits, transition your figure-based app to use the uifigure function.
Then, follow these steps to replace UIControl objects in your app with UI components:

1 Replace calls to the uicontrol function with calls to the corresponding UI component function.
2 Update properties of the UI component.
3 Update callbacks of the UI component.

Replace uicontrol Function Calls
The uicontrol function has an argument for specifying the style of the control. Every UIControl
style corresponds to a UI component object with similar functionality and appearance. In uifigure-
based apps, replace calls to the uicontrol function with the corresponding UI component function.
This table provides a list of the UIControl styles and the corresponding UI component function.

UIControl Objects UI Component Objects
Style Appearance Function Appearance
'pushbutton' uibutton

'togglebutton' • uibutton with
'state' style for a
single, independent
state button

• uitogglebutton
for a group of linked
toggle buttons

'checkbox' uicheckbox

'radiobutton' uiradiobutton

'edit' (single line) uieditfield

 Update UIControl Objects and Callbacks

14-11

UIControl Objects UI Component Objects
Style Appearance Function Appearance
'edit' (multiple lines) uitextarea

'text' uilabel

'slider' uislider

'listbox' uilistbox

'popupmenu' uidropdown

'frame' • uipanel
• uibuttongroup

Some UI components have slightly different configurations and behavior than their UIControl
equivalent. In many cases, you can update your code to adjust for these differences using the
following steps.

Slider Differences

The slider UI component created using uislider has a different appearance than the slider
UIControl object.

If your app uses a UIControl slider to allow users to scroll in a container, consider removing your
code that manages scrolling and using these alternatives instead:

• Set the Scrollable property of the container to 'on' to enable scrolling.
• Use the scroll function to scroll within the container programmatically.

Text Input Differences

The 'edit' style UIControl objects align text in the center by default, whereas uieditfield and
uitextarea UI components align text on the left. You can specify the text alignment of these UI
components by specifying the HorizontalAlignment property.

If your app uses an 'edit' style UIControl object to allow users to input numeric values, you can
instead create a numeric edit field using the uieditfield function by specifying the style
argument as "numeric":

fig = uifigure;
ef = uieditfield(fig,"numeric");

14 Transition or Maintain figure-Based Apps

14-12

Parent Container Differences

Both the uicontrol function and UI component functions have an optional first input argument to
specify the parent container. If you omit this argument in the uicontrol function, the function adds
the control to the current figure. If you omit this argument in a UI component function such as
uibutton or uicheckbox, the function creates a new UI figure and adds the component to that
figure.

In uifigure-based apps, create the main app UI figure using the uifigure function and return the
Figure object as a variable. Then, pass that variable as the first argument to the UI component
functions.

fig = uifigure;
btn = uibutton(fig,"BackgroundColor","blue");
cbx = uicheckbox(fig,"Position",[220 100 84 22]);

For more information, see “Update App Figure and Containers” on page 14-7.

Update Component Properties
UI component objects and UIControl objects have many of the same properties. For example, both
types of objects have Position, BackgroundColor, and FontSize properties. You can use the
same code to set these properties for both UIControl objects and UI components.

However, if you set certain UIControl properties in your app, you might need to update the names
or values of these properties when you transition to using UI components. This table lists some
common properties of UIControl objects that differ from UI component properties and suggested
actions to take if you set these properties in your code. If you encounter an error related to a
property that is not listed in the table, see the properties page of the specific UI component to resolve
the error. For a list of all UI components and links to their properties, see “App Building Components”
on page 4-2.

UIControl Property Description Suggested Actions
String The String property of a

UIControl object specifies the
display text for the component.
Depending on the UI
component, this property is
replaced by Text, Value, or
Items.

• Labels, buttons, and check
boxes — Replace references
to String with Text.

• Edit fields and text areas —
Replace references to
String with Value.

• Drop-down components and
list boxes — Replace
references to String with
Items.

 Update UIControl Objects and Callbacks

14-13

UIControl Property Description Suggested Actions
Units The Units property of a

UIControl object specifies the
units of measurement for the
object. UI component objects do
not have a Units property. All
UI components use pixel units
to measure distances.

Update the Position property
of your UI components to use
pixel units.

Alternatively, if you use
normalized units to manage app
resize behavior, instead update
your app layout to use a grid
layout manager.

For more information, see
“Manage App Resize Behavior
Programmatically” on page 10-
10.

Value The Value property modifies
the status of certain UIControl
objects. For each of these
UIControl styles, the
equivalent UI component also
has a Value property. However,
the types of property values you
specify might differ.

• State buttons, toggle
buttons, radio buttons, and
check boxes — Specify
Value as 0 (unselected or
raised) or 1 (selected or
depressed).

• Drop-down components and
list boxes — Specify Value
as an element of Items.

• Sliders — No changes
needed. The Value property
for sliders has the same
effect in UIControl objects
and Slider UI components.

ForegroundColor The ForegroundColor
property of a UIControl object
specifies the text color for the
component. In UI components,
this property is named
FontColor.

Replace all references to
ForegroundColor with
FontColor.

Max and Min The values of the Max and Min
properties have different effects
depending on the UIControl
style. UI components have
separate properties with more
specific names and behavior.

• Sliders — Use the Limits
property to set the maximum
and minimum slider values.

• Edit fields and text areas —
Create an edit field for
single-line text and a text
area for multi-line text.

• List boxes — Set the
MultiSelect property to
'on' to allow users to select
multiple items.

14 Transition or Maintain figure-Based Apps

14-14

UIControl Property Description Suggested Actions
CData The CData property specifies an

icon or image associated with a
UIControl object. UI
components that support icons
have an Icon property instead.
In addition, there is an image UI
component for displaying
images in an app.

• Push buttons and toggle
buttons — Specify Icon as a
3-D array of truecolor RGB
values or a path to an image
file.

• Standalone images — Use
the uiimage function.

Extent The Extent property of the
UIControl object stores the
size of the object based on its
text and font size. UI
components have no equivalent
property.

If your app uses the Extent
property to specify a component
size based on the text it
contains, update your app
layout to use a grid layout
manager by using the
uigridlayout function.
Specify the column width of grid
columns that contain
components with text as 'fit',
which scales the component size
to fit the text it contains.

SliderStep The SliderStep property
controls the magnitude of the
slider value change when a user
clicks the arrow buttons. There
is no equivalent functionality for
a Slider object created using
the uislider function.

Determine if this functionality is
critical to your app before
updating. There is no equivalent
functionality in uifigure-based
apps.

Update Callbacks
UIControl objects have a Callback property. The callback function assigned to this property
executes in response to a user interaction, where the interaction depends on the style of the
UIControl. For every UIControl style, the corresponding UI component has an equivalent callback
property, but the property name is specific to the user interaction it corresponds to. To transition your
app code, wherever you assign a callback function to a Callback property, update the property name
to the equivalent callback property for the UI component. This table lists the callback property names
for each component type.

UIControl Style Callback User Interaction Equivalent UI Component
Callback

'pushbutton' The user clicks the button. ButtonPushedFcn
'togglebutton' The user clicks the button. ButtonPushedFcn
'checkbox' The user sets or clears the

check box.
SelectionChangedFcn

'radiobutton' The user clicks the button. SelectionChangedFcn of the
parent ButtonGroup container

 Update UIControl Objects and Callbacks

14-15

UIControl Style Callback User Interaction Equivalent UI Component
Callback

'edit' The user enters text in the edit
field.

ValueChangedFcn

'slider' The user changes the slider
value.

ValueChangedFcn

'listbox' The user selects an item. ValueChangedFcn
'popupmenu' The user selects an item. ValueChangedFcn

For example, this code creates a button UIControl object that prints a statement to the MATLAB
Command Window when the user pushes the button.

c = uicontrol;
c.Style = "pushbutton";
c.Callback = @(src,event)disp("Button pushed");

The behavior is equivalent to creating a uibutton component and setting the ButtonPushedFcn
callback property:

fig = uifigure;
btn = uibutton(fig)
btn.ButtonPushedFcn = @(src,event)disp("Button pushed");

If your app uses a KeyPressFcn callback to respond while a user types in an 'edit' style
UIControl object, instead consider using the ValueChangingFcn callback when you update your
uicontrol function to uieditfield or uitextarea. The ValueChangingFcn callback of an edit
field or text area component executes repeatedly as the user types in the component.

fig = uifigure;
ef = uieditfield(fig);
ef.ValueChangingFcn = @(src,event)disp("Typing...");

Key Press and Button Down Callbacks

All UIControl objects have a ButtonDownFcn callback to respond when a user clicks on an object,
and KeyPressFcn and KeyReleaseFcn callbacks to respond when a user presses a key when the
object has focus. There is no equivalent callback associated with UI components. However, you can
update your code to have the same behavior by specifying a WindowButtonDownFcn,
WindowKeyPressFcn, or WindowKeyReleaseFcn callback on the UI figure that contains the
component. You can then query the object that was last clicked by using the CurrentObject
property.

UIControl Callback UIFigure Callback Example
ButtonDownFcn WindowButtonDownFcn fig = uifigure;

lb = uilistbox(fig);
fig.WindowButtonDownFcn = {@processClick,lb};

function processClick(src,event,lb)
 if src.CurrentObject == lb
 disp("List box clicked")
 end
end

14 Transition or Maintain figure-Based Apps

14-16

UIControl Callback UIFigure Callback Example
KeyPressFcn WindowKeyPressFcn fig = uifigure;

lb = uilistbox(fig);
fig.WindowKeyPressFcn = {@processKeyPress,lb};

function processKeyPress(src,event,lb)
 if src.CurrentObject == lb
 disp("List box key pressed")
 end
end

KeyReleaseFcn WindowKeyReleaseFcn fig = uifigure;
lb = uilistbox(fig);
fig.WindowKeyReleaseFcn = {@processKeyRelease,lb};

function processKeyRelease(src,event,lb)
 if src.CurrentObject == lb
 disp("List box key released")
 end
end

See Also

Related Examples
• “Update figure-Based Apps to Use uifigure” on page 14-2
• “Update App Figure and Containers” on page 14-7
• “Update Dialog Boxes” on page 14-18
• “Create and Run a Simple Programmatic App” on page 15-2

 Update UIControl Objects and Callbacks

14-17

Update Dialog Boxes
Add dialog boxes to your uifigure-based app by using functions such as uialert and uiconfirm.
These dialog box functions are specifically configured to be used in apps. Creating dialog boxes using
functions such as errordlg and questdlg will continue to be supported. However, there are
benefits to using dialog boxes specific to app building. These dialog boxes have additional
customization options, including:

• The ability to specify a custom icon
• The ability to format text using HTML or LaTeX markup
• The ability to write a callback that executes when the dialog box is closed

Also, these dialog boxes are displayed within the UI figure window that makes up your app.

To take advantage of these benefits, as you transition your figure-based app to use the uifigure
function, update the functions you call to create dialog boxes for your app. This table lists the
functions available for creating dialog boxes in figure-based apps and the corresponding functions
configured for uifigure-based apps.

14 Transition or Maintain figure-Based Apps

14-18

figure-Based Apps uifigure-Based Apps
Function Example Function Example
errordlg errordlg("Operation unsuccessful","Error");uialert fig = uifigure;

uialert(fig,"Operation unsuccessful","Error")

warndlg warndlg("This operation cannot be undone","Warning");uialert fig = uifigure;
uialert(fig,"This operation cannot be undone","Warning", ...
 "Icon","warning")

msgbox msgbox("Operation completed","Done","modal");uialert fig = uifigure;
uialert(fig,"Operation completed","Done", ...
 "Icon","none")

helpdlg helpdlg("Consider using a cell array","Data Types");uialert fig = uifigure;
uialert(fig,"Consider using a cell array","Data Types", ...
 "Icon","info")

 Update Dialog Boxes

14-19

figure-Based Apps uifigure-Based Apps
Function Example Function Example
questdlg questdlg("Do you want to continue?","Confirm");uiconfirm fig = uifigure;

uiconfirm(fig,"Do you want to continue?","Confirm", ...
 "Options",["Yes" "No" "Cancel"])

waitbar waitbar(0.3,"Loading...","Name","Please Wait");uiprogressdl
g

fig = uifigure;
uiprogressdlg(fig,"Value",0.3, ...
 "Message","Loading...", ...
 "Title","Please Wait");

See Also

Related Examples
• “Update figure-Based Apps to Use uifigure” on page 14-2
• “Update App Figure and Containers” on page 14-7
• “Update UIControl Objects and Callbacks” on page 14-11

14 Transition or Maintain figure-Based Apps

14-20

Examples of Programmatic Apps

15

Create and Run a Simple Programmatic App
This example shows how to create and run a programmatic app using MATLAB® functions. The
example guides you through the process of building a runnable app in which users can interactively
explore different types of plots. Build the app using these steps:

1 Design the app layout by creating the main figure window, laying out the UI components in it,
and configuring the appearance of the components by setting properties.

2 Program the app to respond when a user interacts with it.
3 Run the app to verify that your app looks and behaves as expected.

Define Main App Function

To create a programmatic app, write your app code in a function file. This allows users to run your
app from the Command Window by entering the name of the function.

Create a new function named simpleApp and save it to a file named simpleApp.m in a folder that is
on the MATLAB path. Provide context and instructions for using the app by adding help text to your
function. Users can see this help text by entering help simpleApp at the command line.

function simpleApp
% SIMPLEAPP Interactively explore plotting functions
% Choose the function used to plot the sample data to see the

15 Examples of Programmatic Apps

15-2

% differences between surface plots, mesh plots, and waterfall plots

end

Write all of your app code inside the simpleApp.m file. To view the full example code, see Run the
App on page 15-0 .

Create UI Figure Window

Every programmatic app requires a UI figure window to serve as the primary app container. This is
the window that appears when a user runs your app, and it holds the UI components that make up
the app. Create a UI figure window configured specifically for app building by calling the uifigure
function. Return the resulting Figure object as a variable so that you can access the object later in
your code. You can modify the size, appearance, and behavior of your figure window by setting figure
properties using dot notation.

In this example, add this code to the simpleApp function to create a UI figure window and specify its
title.

fig = uifigure;
fig.Name = "My App";

Manage App Layout

Manage the position and size of UI components in your figure window using a grid layout manager.
This allows you to lay out your UI components in a grid by specifying a row and column for each
component.

Add a grid layout manager to your app by using the uigridlayout function. Create the grid in the
figure window by passing in fig as the first argument, and then specify the grid size. In this example,
create a 2-by-2 grid by adding this code to the simpleApp function.

gl = uigridlayout(fig,[2 2]);

Control the size of each grid row and column by setting the RowHeight and ColumnWidth properties
of the grid layout manager. In this example, ensure that the focal point of your app is the plotted data.
Specify that the top row of the app is 30 pixels tall, and that the second row fills the rest of the figure
window. Fit the width of the first column to the content it holds.

gl.RowHeight = {30,'1x'};
gl.ColumnWidth = {'fit','1x'};

For more information about how to lay out apps, see “Lay Out Apps Programmatically” on page 10-2.

Create and Position UI Components

Users interact with your app by interacting with different UI components, such as buttons, drop-
downs, or edit fields. For a list of all available UI components, see “App Building Components” on
page 4-2.

This example uses three different UI components:

• A label to provide instruction
• A drop-down to let users choose a plotting function
• A set of axes to plot the data on

 Create and Run a Simple Programmatic App

15-3

Create a UI component and add it to the grid by calling the corresponding component creation
function and specifying the grid layout manager as the first input argument. Store the components as
variables to access them later in your code. To create and store these three components, add this
code to the simpleApp function.

lbl = uilabel(gl);
dd = uidropdown(gl);
ax = uiaxes(gl);

After you create the components for your app, position them in the correct rows and columns of the
grid. To do this, set the Layout property of each component. Position the label in the upper-left
corner of the grid and the drop-down in the upper-right corner. Make the Axes object span both
columns in the second row by specifying Layout.Column as a two-element vector.

% Position label
lbl.Layout.Row = 1;
lbl.Layout.Column = 1;
% Position drop-down
dd.Layout.Row = 1;
dd.Layout.Column = 2;
% Position axes
ax.Layout.Row = 2;
ax.Layout.Column = [1 2];

Configure UI Component Appearance

Every UI component object has many properties that determine its appearance. To change a property,
set it using dot notation. For a list of component properties, see the corresponding properties page.
For example, DropDown Properties lists all the properties of the drop-down component.

Modify the label text to provide context for the drop-down options by setting the Text property.

lbl.Text = "Choose Plot Type:";

Specify the plotting functions that users can choose from in the drop-down by setting the Items
property. Set the value of the drop-down that the user sees when they first run the app.

dd.Items = ["Surf","Mesh","Waterfall"];
dd.Value = "Surf";

Program App Behavior

Program your app to respond to user interactions by using callback functions. A callback function is a
function that executes when the app user performs a specific interaction, such as selecting a drop-
down item. Every UI component has multiple callback properties, each of which corresponds to a
different user interaction. Write a callback function and assign it to an appropriate callback property
to control the behavior of your app.

In this example, program your app to update the plot when a user selects a new drop-down item. In
the simpleApp.m file, after the simpleApp function, define a callback function named
changePlotType. MATLAB automatically passes two input arguments to every callback function
when the callback is triggered. These input arguments are often named src and event. The first
argument contains the component that triggered the callback, and the second argument contains
information about the user interaction. Define changePlotType to accept src and event in
addition to a third input argument that specifies the axes to plot on. In the callback function, access
the new drop-down value using the event argument and then use this value to determine how to

15 Examples of Programmatic Apps

15-4

update the plot data. Call the appropriate plotting function and specify the input axes as the axes to
plot on.

function changePlotType(src,event,ax)
type = event.Value;
switch type
 case "Surf"
 surf(ax,peaks);
 case "Mesh"
 mesh(ax,peaks);
 case "Waterfall"
 waterfall(ax,peaks);
end
end

To associate the changePlotType function with the drop-down component, in the simpleApp
function, set the ValueChangedFcn property of the drop-down component to be a cell array. The first
element of the cell array is a handle to the changePlotType callback function. The second element
is the Axes object to plot the data on. When an app user selects a drop-down option, MATLAB calls
the callback function and passes in the source, event, and axes arguments. The callback function then
updates the plot in the app.

dd.ValueChangedFcn = {@changePlotType,ax};

For more information about writing callback functions, see “Write Callbacks for Apps Created
Programmatically” on page 11-2.

Finally, to make sure the plotted data is consistent with the drop-down value even before
changePlotType first executes, call the surf function.

surf(ax,peaks);

Run the App

After adding all of the app elements, your simpleApp function should look like this:

function simpleApp
% SIMPLEAPP Interactively explore plotting functions
% Choose the function used to plot the sample data to see the
% differences between surface plots, mesh plots, and waterfall plots

% Create figure window
fig = uifigure;
fig.Name = "My App";

% Manage app layout
gl = uigridlayout(fig,[2 2]);
gl.RowHeight = {30,'1x'};
gl.ColumnWidth = {'fit','1x'};

% Create UI components
lbl = uilabel(gl);
dd = uidropdown(gl);
ax = uiaxes(gl);

% Lay out UI components
% Position label
lbl.Layout.Row = 1;

 Create and Run a Simple Programmatic App

15-5

lbl.Layout.Column = 1;
% Position drop-down
dd.Layout.Row = 1;
dd.Layout.Column = 2;
% Position axes
ax.Layout.Row = 2;
ax.Layout.Column = [1 2];

% Configure UI component appearance
lbl.Text = "Choose Plot Type:";
dd.Items = ["Surf" "Mesh" "Waterfall"];
dd.Value = "Surf";
surf(ax,peaks);

% Assign callback function to drop-down
dd.ValueChangedFcn = {@changePlotType,ax};
end

% Program app behavior
function changePlotType(src,event,ax)
type = event.Value;
switch type
 case "Surf"
 surf(ax,peaks);
 case "Mesh"
 mesh(ax,peaks);
 case "Waterfall"
 waterfall(ax,peaks);
end
end

View the help text for your app.

help simpleApp

 SIMPLEAPP Interactively explore plotting functions
 Choose the function used to plot the sample data to see the
 differences between surface plots, mesh plots, and waterfall plots

Run the app by entering the app name in the Command Window. Update the plot by choosing a
different plotting option from the drop-down.

simpleApp

15 Examples of Programmatic Apps

15-6

See Also

Related Examples
• “App Building Components” on page 4-2
• “Lay Out Apps Programmatically” on page 10-2
• “Write Callbacks for Apps Created Programmatically” on page 11-2
• “Create and Run a Simple App Using App Designer” on page 3-2

 Create and Run a Simple Programmatic App

15-7

Programmatic App That Displays a Table
This example shows how to display a table in an app using the uitable function. It also shows how
to modify the appearance of the table and how to restrict editing of the table in the running app.

Create a Table UI Component Within a Figure

The uitable function creates an empty UI table in the figure.

fig = uifigure('Position',[100 100 752 250]);
uit = uitable('Parent',fig,'Position',[25 50 700 200]);

Create a Table Containing Mixed Data Types

Load sample patient data that contains mixed data types and store it in a table array. To have data
appear as a drop-down list in the cells of the table component, convert a cell array variable to a
categorical array. To display the data in the table UI component, specify the table array as the value
of the Data property.

load patients
t = table(LastName,Age,Weight,Height,Smoker, ...
 SelfAssessedHealthStatus);
t.SelfAssessedHealthStatus = categorical(t.SelfAssessedHealthStatus, ...
 {'Poor','Fair','Good','Excellent'},'Ordinal',true);

uit.Data = t;

Customize the Display

You can customize the display of a UI table in several ways. Use the ColumnName property to add
column headings.

uit.ColumnName = {'Last Name','Age','Weight', ...
 'Height','Smoker','Health Status'};

15 Examples of Programmatic Apps

15-8

To adjust the widths of the columns, specify the ColumnWidth property. The ColumnWidth property
is a 1-by-N cell array, where N is the number of columns in the table. Set a specific column width, or
use 'auto' to let MATLAB® set the width based on the contents.

uit.ColumnWidth = {'auto',75,'auto','auto','auto',100};

Add numbered row headings by setting the RowName property to 'numbered'.

uit.RowName = 'numbered';

 Programmatic App That Displays a Table

15-9

Reposition and resize the table using the Position property.

uit.Position = [15 25 565 200];

By default, table UI components use row striping and cycle through the specified background colors
until the end of the table is reached. If you set the RowStriping property to 'off', the table UI
component will just use the first color specified in the BackgroundColor property for all rows. Here,
leave row striping 'on' and set three different colors for the BackgroundColor property.

uit.BackgroundColor = [1 1 .9; .9 .95 1;1 .5 .5];

15 Examples of Programmatic Apps

15-10

Enable Column Sorting and Restrict Editing of Cell Values

To restrict the user's ability to edit data in the table, set the ColumnEditable property. By default,
data cannot be edited in the running app. Setting the ColumnEditable property to true for a
column allows the user to edit data in that column.

uit.ColumnEditable = [false true true true true true];

Make all the columns sortable by setting the ColumnSortable property to true. If a column is
sortable, arrows appear in the header when you hover your mouse over it.

uit.ColumnSortable = true;

 Programmatic App That Displays a Table

15-11

Create a Callback

To program the table to respond to user interaction, create a callback function. For example, you can
specify a SelectionChangedFcn to execute commands when the app user selects a different row,
column, or cell of the table.

Here, write a callback function to validate that the values in the Age column are between 0 and 120.
Create a new function named ageCheckCB and save it to a file named ageCheckCB in a folder that is
on the MATLAB path.

function ageCheckCB(src,event)
if (event.Indices(2) == 2 && ... % check if column 2
 (event.NewData < 0 || event.NewData > 120))
 tableData = src.Data;
 tableData{event.Indices(1),event.Indices(2)} = event.PreviousData;
 src.Data = tableData; % revert the data
 warning('Age must be between 0 and 120.') % warn the user
end

Assign the ageCheckCB to the CellEditCallback property. This callback executes when the user
changes a value in a cell. If the user enters a value that is outside the acceptable range, the callback
function returns a warning and sets the cell value back to the previous value.

uit.CellEditCallback = @ageCheckCB;

For more information about writing callback functions, see “Write Callbacks for Apps Created
Programmatically” on page 11-2.

Get All Table Properties

To see all the properties of the table, use the get command.

get(uit)

 BackgroundColor: [3x3 double]
 BeingDeleted: off
 BusyAction: 'queue'
 ButtonDownFcn: ''
 CellEditCallback: @ageCheckCB
 CellSelectionCallback: ''
 Children: [0x0 handle]

15 Examples of Programmatic Apps

15-12

 ColumnEditable: [0 1 1 1 1 1]
 ColumnFormat: {}
 ColumnName: {6x1 cell}
 ColumnRearrangeable: off
 ColumnSortable: 1
 ColumnWidth: {'auto' [75] 'auto' 'auto' 'auto' [100]}
 ContextMenu: [0x0 GraphicsPlaceholder]
 CreateFcn: ''
 Data: [100x6 table]
 DeleteFcn: ''
 DisplayData: [100x6 table]
 DisplayDataChangedFcn: ''
 Enable: 'on'
 Extent: [0 0 300 300]
 FontAngle: 'normal'
 FontName: 'Helvetica'
 FontSize: 12
 FontUnits: 'pixels'
 FontWeight: 'normal'
 ForegroundColor: [0 0 0]
 HandleVisibility: 'on'
 InnerPosition: [15 25 565 200]
 Interruptible: on
 KeyPressFcn: ''
 KeyReleaseFcn: ''
 Layout: [0x0 matlab.ui.layout.LayoutOptions]
 Multiselect: on
 OuterPosition: [15 25 565 200]
 Parent: [1x1 Figure]
 Position: [15 25 565 200]
 RowName: 'numbered'
 RowStriping: on
 Selection: []
 SelectionChangedFcn: ''
 SelectionType: 'cell'
 StyleConfigurations: [0x3 table]
 Tag: ''
 Tooltip: ''
 Type: 'uitable'
 Units: 'pixels'
 UserData: []
 Visible: on

See Also
Functions
uitable | uifigure

Properties
Table Properties

Related Examples
• “Style Cells in a Table UI Component” on page 15-15
• “Table Array Data Types in App Designer Apps” on page 4-15

 Programmatic App That Displays a Table

15-13

• “Create App with a Table That Can Be Sorted and Edited Interactively” on page 7-8

15 Examples of Programmatic Apps

15-14

Style Cells in a Table UI Component
When you display table data in an app, you can style individual cells, rows, and columns of the table
UI component by using the uistyle and addStyle functions. Use styles to modify background
colors, display icons, format equations, and provide clickable links in table cells. This example shows
how you can use styles to display sample tsunami data in a table.

Create Table UI Component
Read in tsunami data from a file, and then extract a subset of the data to display.

T = readtable("tsunamis.xlsx");
T = T(1:20,["Year" "Validity" "MaxHeight" "Intensity"]);

Display the data in a table UI component.

fig = uifigure;
tbl = uitable(fig,"Position",[10 10 540 400],"Data",T);

Modify Background Color of Table Rows
Draw attention to the rows of the table that represent the largest tsunamis by setting the background
color of those rows to red.

First, find the rows that represent tsunamis with a maximum height greater than 10 meters.

rows = find(tbl.Data.MaxHeight > 10);

Then, create a style with a red background color and add the style to those rows.

s1 = uistyle("BackgroundColor","#F48B74");
addStyle(tbl,s1,"row",rows)

 Style Cells in a Table UI Component

15-15

Display Icons in Table Cells
Next, add a warning icon to the table cells that specify that the tsunami validity is questionable or
very doubtful.

Find the rows with questionable or doubtful tsunamis. Because all the cells that specify validity are in
the second column of the table, construct an array containing the row and column indices of the cells
by horizontally concatenating a vector that contains only values of 2.
warningRows = find(strcmp(tbl.Data.Validity,'questionable tsunami') | ...
 strcmp(tbl.Data.Validity,'very doubtful tsunami'));
warningColumns = repmat(2,size(warningRows));
cells = [warningRows warningColumns];

Finally, style the cells with a warning icon to the right of the text.

s2 = uistyle("Icon","warning","IconAlignment","right");
addStyle(tbl,s2,"cell",cells)

15 Examples of Programmatic Apps

15-16

Format Equations and Symbols in Table Column
Add TeX markup to the Intensity column of the table.

First, identify the rows with no intensity data. Then, convert the values in the Intensity column to
strings, and specify that the cells with missing data display the ⊘ symbol. For the cells with data,
prepend the string "M_L = " to the data to indicate that the value gives the Richter magnitude.

nanData = isnan(tbl.Data.Intensity);
tbl.Data.Intensity = string(tbl.Data.Intensity);
tbl.Data.Intensity(nanData) = "\oslash";
tbl.Data.Intensity(~nanData) = "M_L = " + tbl.Data.Intensity(~nanData);

Style the cells in the column to use TeX markup by setting the Interpreter property to "tex".
Additionally, align text on the right side of the cells in the column by setting the
HorizontalAlignment property to "right".

s3 = uistyle("Interpreter","tex","HorizontalAlignment","right");
addStyle(tbl,s3,"column","Intensity")

 Style Cells in a Table UI Component

15-17

Remove Style
Inspect the styles on the table by querying the StyleConfigurations property of the table UI
component. The styles are listed in the order in which you applied them to the table.

tbl.StyleConfigurations

ans =

 3×3 table

 Target TargetIndex Style
 ______ _____________ _________________________

 1 row {[7 13 16]} 1×1 matlab.ui.style.Style
 2 cell {6×2 double } 1×1 matlab.ui.style.Style
 3 column {'Intensity'} 1×1 matlab.ui.style.Style

Remove the first style from the table.

removeStyle(tbl,1)

15 Examples of Programmatic Apps

15-18

See Also
Functions
uitable | uistyle | addStyle | removeStyle | uifigure

Properties
Table Properties

Related Examples
• “Programmatic App That Displays a Table” on page 15-8
• “Table Array Data Types in App Designer Apps” on page 4-15
• “Create App with a Table That Can Be Sorted and Edited Interactively” on page 7-8

 Style Cells in a Table UI Component

15-19

Live Editor Task Development

• “Live Editor Task Development Overview” on page 16-2
• “Create Simple Live Editor Task” on page 16-14
• “Share Live Editor Tasks” on page 16-20

16

Live Editor Task Development Overview
Live Editor tasks are simple point-and-click interfaces that can be embedded into a live script to
perform a specific set of operations. You can use tasks to explore parameters and automatically
generate code in a live script. Tasks are useful because they can help reduce development time,
errors, and time spent plotting.

MATLAB provides a set of Live Editor tasks for use in live scripts. You also can create your own Live
Editor task by defining a subclass of the matlab.task.LiveTask base class. Then, to make the task
available in the Live Editor, configure the task using the Task Metadata dialog box.

Define Live Editor Task Subclass
To create custom Live Editor task, first, define a subclass of the matlab.task.LiveTask base class
by following these steps:

1 Create the Live Editor task subclass.
2 Define public and private properties.
3 Implement the get.Summary, get.State, and set.State methods.
4 Implement the setup, generateCode, and reset methods.
5 Implement the postExecutionUpdate method (optional).
6 Emit a StateChanged event (optional).
7 Set the AutoRun property (optional).

Create Live Editor Task Subclass

To create a subclass of the matlab.task.LiveTask base class, create a class definition file using
this code. Replace the class name in the code with the name of your Live Editor task class. Then, save
the file as a .m file with the same name as the class.
classdef TaskClassName < matlab.task.LiveTask
 properties(Access = private,Transient)

 end
 properties(Dependent)
 State
 Summary
 end
 methods(Access = protected)
 function setup(task)

 end
 end
 methods
 function [code,outputs] = generateCode(task)
 code = "";
 outputs = {};
 end

 function summary = get.Summary(task)
 summary = "Task summary";
 end

 function state = get.State(task)
 state = struct;
 end

 function set.State(task,state)

 end

 function reset(task)

16 Live Editor Task Development

16-2

 end
 end
end

For example, to create a Live Editor task that normalizes vector data, create the file
NormalizeVectorData.m and add the preceding code to the file. Then, rename the class to
NormalizeVectorData by changing the first line of the file.
classdef NormalizeVectorData < matlab.task.LiveTask

Define Public and Private Properties

Define the properties for your class. In the private properties block, define properties to store the
implementation details of your class that you want to hide. These properties store the underlying
graphics and UI objects that make up your task, in addition to any calculated values that you want to
store. Eventually, your class will use the data in the public properties to configure the underlying
objects in the private properties. Set the Transient attribute for the private block to avoid storing
redundant information if an instance of the task is saved.

In the public properties block, define the properties that the base class needs access to, including the
two required public properties State and Summary. The State property stores the current state of
the task, and the Summary property stores a dynamic summary of what the task does. Set the
Dependent attribute for the public block to avoid access issues with the get and set methods for the
properties.

For example, define the public and private properties for the NormalizeVectorData class.

properties(Access = private,Transient)
 InputDataDropDown matlab.ui.control.DropDown
 MethodDropDown matlab.ui.control.DropDown
 ZscoreGrid matlab.ui.container.GridLayout
 ZscoreDropDown matlab.ui.control.DropDown
end

properties(Dependent)
 State
 Summary
end

Implement get.Summary Method

Define the get.Summary method for your class to dynamically generate the description of what the
task does. The get.Summary method executes when the value of the Summary property is requested.
The returned summary displays at the top of the task and remains visible when the task is collapsed.

Define the method in a method block with no arguments so that it is called when getting the value of
the Summary property. The get.Summary method returns the generated description as a character
array.

For example, implement the get.Summary method for the NormalizeVectorData class. Use the
selected normalizing method in the MethodDropDown list and the selected input data in the
InputDataDropDown list to generate a dynamic summary based on the current selection. If no input
data is selected, set the summary to match the default description defined in the liveTasks.json
file. To display variable or function names in monospaced font, surround them with backticks (``).
function summary = get.Summary(task)
 if isequal(task.InputDataDropDown.Value,"select variable")
 summary = "Normalize vector data";
 else
 switch task.MethodDropDown.Value
 case "zscore"
 methodString = " using z-score";

 Live Editor Task Development Overview

16-3

 case "norm"
 methodString = " using 2-norm";
 case "scale"
 methodString = " using scaling by standard deviation";
 end
 summary = "Normalized vector `" + task.InputDataDropDown.Value + ...
 "`" + methodString;
 end
end

Implement get.State and set.State Methods

Define the get.State and set.State methods for your class to get and set the current state of the
UI objects in the task. The Live Editor uses these methods to restore a task to a specified state during
copy, paste, undo, and redo operations, as well as when the live script containing the task is closed
and reopened. The current state of the task is stored in a struct. When the live script is closed, the
Live Editor uses the jsonencode function to convert the struct returned by get.State to JSON
format and saves the encoded state with the live script. When the live script is reopened, the Live
Editor converts the encoded state back to a struct, which is then used to set the current state of the
task using set.State. Refer to the jsonencode function for more information about the data types
it supports.

Define the methods in the same method block as the get.Summary method so that they are called
when setting or getting the value of the State property. The get.State method returns a struct
containing the current value of each UI object in the task. The set.State method takes a struct
previously returned by the get.State method and uses the struct to set the value of each UI object
in the task.

For example, implement the get.State and set.State methods for the NormalizeVectorData
class. In the get.State method, create and return a struct with the value of each DropDown object
in the task.
function state = get.State(task)
 state = struct;
 state.InputDataDropDownValue = task.InputDataDropDown.Value;
 state.MethodDropDownValue = task.MethodDropDown.Value;
 state.ZscoreDropDownValue = task.ZscoreDropDown.Value;
end

In the set.State method, use the values stored in the struct that is passed in to set the value of
each DropDown object in the task.
function set.State(task,state)
 task.InputDataDropDown.Value = state.InputDataDropDownValue;
 task.MethodDropDown.Value = state.MethodDropDownValue;
 task.ZscoreDropDown.Value = state.ZscoreDropDownValue;
 updateComponents(task);
end

Implement setup Method

Define the setup method for your class. The setup method sets the initial state of the task and
executes once when MATLAB constructs the task. Define the setup method in a protected block so
that only your class can execute it.

Use the setup method to:

• Create, layout, and configure the graphics and UI objects that make up the task.
• Program the behavior of objects within the task.
• Set the default values for the objects.

16 Live Editor Task Development

16-4

Note All graphics and UI objects for the task must be added to the task's grid layout manager,
LayoutManager. If an object is added to the task directly, MATLAB throws an error.

For example, implement the setup method for the NormalizeVectorData class. In the setup
method, call the createComponents, setComponentsToDefault, and updateComponents helper
functions to create and arrange the components in the task, set all the components to their default
values, and update the components.

function setup(task)
 createComponents(task);
 setComponentsToDefault(task);
 updateComponents(task);
end

Create a private methods block and define the createComponents, setComponentsToDefault,
updateComponents, and populateWSDropdownItems helper functions.

In the createComponents function, call the uilabel, uigridlayout, and uidropdown functions
to create and arrange Label, GridLayout, and DropDown objects, specifying the task's
LayoutManager as the parent. Store those objects in the corresponding private properties. Specify
the updateComponents method as the ValueChangedFcn callback that is called when the value of
a drop-down list is changed. Specify the populateWSDropdownItems method as the
DropDownOpeningFcn callback that is called when a drop-down list is opened.

methods(Access = private)
 function createComponents(task)
 g = uigridlayout(task.LayoutManager,[1,1]);
 g.RowHeight = {'fit' 'fit' 'fit' 'fit' 'fit' 'fit'};
 g.ColumnWidth = {'fit'};

 % Row 1: Select data section label
 uilabel(g,"Text","Select data","FontWeight","bold");

 % Row 2: Select data section components
 inputgrid = uigridlayout(g,"RowHeight",{'fit'},"ColumnWidth", ...
 {'fit','fit'},"Padding",0);
 uilabel(inputgrid,"Text","Input data");
 task.InputDataDropDown = uidropdown("Parent",inputgrid, ...
 "ValueChangedFcn",@task.updateComponents, ...
 "DropDownOpeningFcn",@task.populateWSDropdownItems);
 task.populateWSDropdownItems(task.InputDataDropDown);

 % Row 3: Specify method section label
 uilabel(g,"Text","Specify method","FontWeight","bold");

 % Row 4: Method section components
 methodgrid = uigridlayout(g,"RowHeight",{'fit'}, ...
 "ColumnWidth",{'fit','fit','fit'},"Padding",0);
 uilabel(methodgrid,"Text","Normalization method");
 task.MethodDropDown = uidropdown(methodgrid,"ValueChangedFcn", ...
 @task.updateComponents);
 task.MethodDropDown.Items = {"Z-score" "2-Norm" ["Scale by ..." ...
 "standard deviation"]};
 task.MethodDropDown.ItemsData = {'zscore' 'norm' 'scale'};

 % Subgrid 1 in method section
 task.ZscoreGrid = uigridlayout(methodgrid,"RowHeight",{'fit'}, ...
 "ColumnWidth",{'fit','fit'},"Padding",0);
 uilabel(task.ZscoreGrid,"Text","Deviation type");
 task.ZscoreDropDown = uidropdown(task.ZscoreGrid,"ValueChangedFcn", ...
 @task.updateComponents,"Items",{'Standard' 'Median absolute'}, ...
 "ItemsData",{'std' 'robust'},"Tooltip", ...
 "Center data to 0 and scale to deviation 1");
 end

 function setComponentsToDefault(task)
 task.MethodDropDown.Value = "zscore";
 task.ZscoreDropDown.Value = "std";
 task.LeftRangeSpinner.Value = 0;
 task.RightRangeSpinner.Value = 1;
 task.InputDataCheckbox.Value = true;

 Live Editor Task Development Overview

16-5

 task.NormalizedDataCheckbox.Value = true;
 end

 function updateComponents(task,source,~)
 hasData = ~isequal(task.InputDataDropDown.Value,"select variable");

 task.MethodDropDown.Enable = hasData;
 task.ZscoreDropDown.Enable = hasData;

 % Show only relevant subgrids
 task.ZscoreGrid.Visible = isequal(task.MethodDropDown.Value,"zscore");

 % Trigger the Live Editor to update the generated script
 notify(task,"StateChanged");
 end

 function populateWSDropdownItems(~,src,~)
 workspaceVariables = evalin("base","who");
 src.Items = ["select variable"; workspaceVariables];
 end
end

Implement generateCode Method

Define the generateCode method for your class to generate the MATLAB commands and output for
the task. This method executes when the task state changes, for example, when a user modifies a task
parameter. The generated code displays in the code section of the task. When the live script section
containing the task runs, the Live Editor uses the generated code to run the task. Define the
generateCode method in the same method block as the get.Summary, get.State, and
set.State methods.

The generateCode method returns two output arguments, code and taskoutputs. code is a
character array or string array containing the generated code for the task. taskoutputs is a cell
array containing the output variables produced by the code. If the task does not generate output,
return taskoutputs as an empty cell array.

For example, implement the generateCode method for the NormalizeVectorData class:

• Start the generated code with a comment that describes what the code is doing. For example, %
Normalize data.

• Surround variable names with backticks (``) to identify variables to the Live Editor and prevent
them from being renamed. If backticks are not added and the task has the same input and output
variable name, then the input variable could get auto-incremented, which could result in errors.

• Minimize the amount of generated code by only including commands that set parameters to
nondefault values. For example, this code checks whether the selected normalization method is
the default method.

• Optionally, separate out the plotting code and add it to the end of the generated code.
function [code,outputs] = generateCode(task)
 if isequal(task.InputDataDropDown.Value,"select variable")
 % Not have enough information to generate code,
 % return empty values
 code = "";
 outputs = {};
 return
 end

 outputs = {'normalizedData'};

 code = "% Normalize data";
 code = code + newline + outputs{1} + " = normalize(";
 code = code + "`" + task.InputDataDropDown.Value + "`";

 if ~isequal(task.MethodDropDown.Value,"zscore") || ...
 ~isequal(task.ZscoreDropDown.Value,"std")
 code = code + ", """ + task.MethodDropDown.Value + """";
 if isequal(task.MethodDropDown.Value,"zscore")

16 Live Editor Task Development

16-6

 code = code + ", """ + task.ZscoreDropDown.Value + """";
 end
 end

 code = code + ");" + newline;
end

Implement reset Method

Define the reset method for your class to bring the task back to its default state. Define the method
in the same method block as the get.Summary, get.State, set.State, and generateCode
methods.

For example, implement the reset method for the NormalizeVectorData class. Call the
setComponentsToDefault function to set all objects to their default values. Then, call the
updateComponents function to update all the components.

function reset(task)
 setComponentsToDefault(task);
 updateComponents(task);
end

Implement postExecutionUpdate Method (Optional)

Optionally, you can define a postExecutionUpdate method for your class to perform specific
updates for your task. This method executes after the live script containing your task runs. For
example, you can implement the postExecutionUpdate method to add newly created variables to a
drop-down list used to select input data after the live script runs.

Define the postExecutionUpdate method in the same protected method block as the setup and
generateCode methods so that only your class can execute it. The postExecutionUpdate method
takes two inputs, an instance of the task, and a struct containing the task outputs (returned by the
generateCode method) and their current workspace values.
function postExecutionUpdate(task,data)
 ...
end

Emit StateChanged Event (Optional)

The Live Editor listens for changes in a task and calls the generateCode method to update the task's
generated code when it detects a change. The Live Editor detects changes by monitoring the
components in the task that fire these events:

• ValueChanged
• ButtonPushed
• ImageClicked
• SelectionChanged

To update the generated code for a task when changes occur outside of the events listed (for
example, in a component that does not fire these events), you can call the notify method to fire the
StateChanged event and trigger a call to the generateCode method for the task.
notify(task,"StateChanged");

Note The Live Editor does not monitor events for components that are created dynamically at run
time.

 Live Editor Task Development Overview

16-7

Set AutoRun Property (Optional)

Optionally, you can set the AutoRun property for your class to specify whether your task runs
automatically when a user modifies the task parameters.

By default, the AutoRun property is set to true and the task runs automatically after a change. To
disable running your task automatically, set the AutoRun property to false.
task.AutoRun = false;

You only need to set the AutoRun property once, preferably when setting the initial state of the task.
For example, set the AutoRun property for the NormalizeVectorData class in the setup method.

function setup(task)
 task.AutoRun = false;
 createComponents(task);
 setComponentsToDefault(task);
 updateComponents(task);
end

Configure Live Editor Task Metadata
After creating the Live Editor task subclass, configure your task for use in the Live Editor by using
the matlab.task.configureMetadata function. The function opens the Task Metadata dialog box.
This dialog box allows you to specify metadata for the task. The Live Editor then uses this metadata
to display the task in the Live Editor task gallery as well as in automatic code suggestions and
completions.

Call the function by passing it the path to the class definition file for your task. If you do not specify a
path, a file selection dialog box opens and prompts you to select a file.

For example, use the matlab.task.configureMetadata function to configure the Normalize
Vector Data task.
matlab.task.configureMetadata("NormalizeVectorData")

The Task Metadata dialog box prepopulates all of the required task metadata details from your task
class definition file.

16 Live Editor Task Development

16-8

You can edit the prepopulated metadata options using the Task Metadata dialog box. This table
describes each individual task metadata option.

Option Summary
Name Specify the name of the task to display in the

autocompletion list and in the Live Editor task
gallery.

This detail is required.
Description Specify the description of the task to display in

the autocompletion list and in the Live Editor
task gallery.

This detail is optional.
Icon Specify the path for the task icon to display in the

Live Editor task gallery. If you specify a task icon,
MATLAB copies it to the resources folder.

This detail is optional.
Keywords Specify the keywords that can be used to show

the task in the autocompletion list.

This detail is optional.

 Live Editor Task Development Overview

16-9

Option Summary
Documentation Link Specify the documentation link as a URL to the

documentation that opens when the task help
icon is clicked. If a documentation link is not
specified, clicking the task help icon opens the
generated help for the task in the Help browser.

This detail is optional.

When you are done editing, select OK. MATLAB creates a folder named resources inside the folder
containing your task class definition file. Inside the resources folder, MATLAB generates a file
named liveTasks.json. This file contains the metadata you provided in the Task Metadata dialog
box, in addition to other metadata MATLAB needs to make your task available in the Live Editor.
Share this folder when you share your Live Editor task.

Note Do not modify the liveTasks.json file by hand. To change any Live Editor task metadata,
use the matlab.task.configureMetadata function.

To make your task available in the Live Editor, add the folder containing your task class definition file
to the MATLAB path. To add the folder, use the addpath function or the Add Folder button in the Set
Path dialog box. To make your task available in the Live Editor in future MATLAB sessions, save the
path using the savepath function or the Save button in the Set Path dialog box.

Note You do not need to add the resources folder that is inside the folder containing your task
class definition file to the path. Folders named resources are not allowed on the MATLAB path.

Use Custom Live Editor Task
To test whether your task creates correctly, create an instance of your class. For example, create an
instance of the NormalizeVectorData class.

c = NormalizeVectorData;

MATLAB creates the Normalize Vector Data task.

16 Live Editor Task Development

16-10

To get all of the UI objects in the task, use the findall function.

h = findall(c.Parent)

h =

 22×1 graphics array:

 Figure (NormalizeVectorData)
 GridLayout
 GridLayout
 Label (Select data)
 GridLayout
 Label (Specify method)
 GridLayout
 Label (Display results)
 GridLayout
 Label (Input data)
 DropDown (select variable)
 Label (Normalization method)
 DropDown (Z-score)
 GridLayout
 GridLayout
 CheckBox (Input data)
 CheckBox (Normalized data)
 Label (Deviation type)

 Live Editor Task Development Overview

16-11

 DropDown (Standard)
 Label (Range edges)
 Spinner (LeftRangeSpinner)
 Spinner (RightRangeSpinner)

To add your task to a live script, in the live script, type one of the keywords defined in
liveTasks.json and select your task from the list of suggested names.

For example, to add the Normalize Vector Data task to a live script, first, create a live script. Then, on
a code line, type norm. MATLAB shows a list of suggested matches.

Select Normalize Vector Data from the list. MATLAB adds the Normalize Vector Data task to the
live script.

To add your task from the toolstrip, go to the Live Editor tab and in the Code section, click Task .
Select Normalize Vector Data to add the Normalize Vector Data task to your live script. You must
save the MATLAB path and restart MATLAB to include your task in the Live Editor task gallery.

16 Live Editor Task Development

16-12

See Also
matlab.task.LiveTask | setup | generateCode | reset

Related Examples
• “Create Simple Live Editor Task” on page 16-14
• “Share Live Editor Tasks” on page 16-20

 Live Editor Task Development Overview

16-13

Create Simple Live Editor Task
This example shows how to create a simple custom Live Editor task and add it to a live script.

Define a class called NormalizeVectorData that creates a custom Live Editor task for normalizing
vector data.

To define the class, create a file called NormalizeVectorData.m that contains the following class
definition with these features:

• State and Summary public properties that store the current state of the task and a dynamic
summary of what the task does.

• Private properties that store the drop-down lists, spinners, checkboxes, and grid layout managers
for selecting input data and specifying parameters.

• A setup method that initializes the task.
• A generateCode method that updates the generated code for the task.
• get.Summary, get.State, and set.State methods for getting and setting the summary and

state of the task.
• An updateComponents method that updates the task when a user selects input data or changes

parameters.
• A reset method that resets the state of the task.

classdef NormalizeVectorData < matlab.task.LiveTask
 properties(Access = private,Transient)
 InputDataDropDown matlab.ui.control.DropDown
 MethodDropDown matlab.ui.control.DropDown
 ZscoreGrid matlab.ui.container.GridLayout
 ZscoreDropDown matlab.ui.control.DropDown
 RangeGrid matlab.ui.container.GridLayout
 LeftRangeSpinner matlab.ui.control.Spinner
 RightRangeSpinner matlab.ui.control.Spinner
 InputDataCheckBox matlab.ui.control.CheckBox
 NormalizedDataCheckBox matlab.ui.control.CheckBox
 end

 properties(Dependent)
 State
 Summary
 end

 methods(Access = private)
 function createComponents(task)
 g = uigridlayout(task.LayoutManager,[1,1]);
 g.RowHeight = {'fit' 'fit' 'fit' 'fit' 'fit' 'fit'};
 g.ColumnWidth = {'fit'};

 % Row 1: Select data section label
 uilabel(g,"Text","Select data","FontWeight","bold");

 % Row 2: Select data section components
 inputgrid = uigridlayout(g,"RowHeight",{'fit'},"ColumnWidth", ...
 {'fit','fit'},"Padding",0);
 uilabel(inputgrid,"Text","Input data");

16 Live Editor Task Development

16-14

 task.InputDataDropDown = uidropdown("Parent",inputgrid, ...
 "ValueChangedFcn",@task.updateComponents, ...
 "DropDownOpeningFcn",@task.populateWSDropdownItems);
 task.populateWSDropdownItems(task.InputDataDropDown);

 % Row 3: Specify method section label
 uilabel(g,"Text","Specify method","FontWeight","bold");

 % Row 4: Method section components
 methodgrid = uigridlayout(g,"RowHeight",{'fit'}, ...
 "ColumnWidth",{'fit','fit','fit'},"Padding",0);
 uilabel(methodgrid,"Text","Normalization method");
 task.MethodDropDown = uidropdown(methodgrid,"ValueChangedFcn", ...
 @task.updateComponents);
 task.MethodDropDown.Items = ["Z-score" "2-Norm" "Scale by " ...
 "standard deviation" "Scale to new range" "Center to mean 0"];
 task.MethodDropDown.ItemsData = {'zscore' 'norm' 'scale' 'range' 'center'};

 % Subgrid 1 in method section
 task.ZscoreGrid = uigridlayout(methodgrid,"RowHeight",{'fit'}, ...
 "ColumnWidth",{'fit','fit'},"Padding",0);
 uilabel(task.ZscoreGrid,"Text","Deviation type");
 task.ZscoreDropDown = uidropdown(task.ZscoreGrid,"ValueChangedFcn", ...
 @task.updateComponents,"Items",{'Standard' 'Median absolute'}, ...
 "ItemsData",{'std' 'robust'},"Tooltip", ...
 "Center data to 0 and scale to deviation 1");

 % Subgrid 2 in method section
 task.RangeGrid = uigridlayout(methodgrid,"RowHeight",{'fit'}, ...
 "ColumnWidth",{'fit' 50 50},"Padding",0);
 task.RangeGrid.Layout.Row = 1;
 task.RangeGrid.Layout.Column = 3;
 uilabel(task.RangeGrid,"Text","Range edges");
 task.LeftRangeSpinner = uispinner(task.RangeGrid,"ValueChangedFcn", ...
 @task.updateComponents,"Tag","LeftRangeSpinner","Tooltip", ...
 "Left edge of new range");
 task.RightRangeSpinner = uispinner(task.RangeGrid,"ValueChangedFcn", ...
 @task.updateComponents,"Tag","RightRangeSpinner", ...
 "Tooltip","Right edge of new range");

 % Row 5: Display results section label
 uilabel(g,"Text","Display results","FontWeight","bold");

 % Row 6: Display results section components
 displaygrid = uigridlayout(g,"RowHeight",{'fit'},"ColumnWidth", ...
 {'fit','fit'},"Padding",0);
 task.InputDataCheckBox = uicheckbox(displaygrid,"Text", ...
 "Input data","ValueChangedFcn",@task.updateComponents);
 task.NormalizedDataCheckBox = uicheckbox(displaygrid,"Text", ...
 "Normalized data","ValueChangedFcn",@task.updateComponents);
 end

 function setComponentsToDefault(task)
 task.MethodDropDown.Value = "zscore";
 task.ZscoreDropDown.Value = "std";
 task.LeftRangeSpinner.Value = 0;
 task.RightRangeSpinner.Value = 1;
 task.InputDataCheckBox.Value = true;

 Create Simple Live Editor Task

16-15

 task.NormalizedDataCheckBox.Value = true;
 end

 function updateComponents(task,source,~)
 if nargin > 1
 if isequal(source.Tag,"LeftRangeSpinner")
 if task.RightRangeSpinner.Value <= task.LeftRangeSpinner.Value
 task.RightRangeSpinner.Value = task.LeftRangeSpinner.Value + 1;
 end
 elseif isequal(source.Tag,"RightRangeSpinner")
 if task.RightRangeSpinner.Value <= task.LeftRangeSpinner.Value
 task.LeftRangeSpinner.Value = task.RightRangeSpinner.Value - 1;
 end
 end
 end
 hasData = ~isequal(task.InputDataDropDown.Value,"select variable");
 task.MethodDropDown.Enable = hasData;
 task.ZscoreDropDown.Enable = hasData;
 task.LeftRangeSpinner.Enable = hasData;
 task.RightRangeSpinner.Enable = hasData;
 task.InputDataCheckBox.Enable = hasData;
 task.NormalizedDataCheckBox.Enable = hasData;
 % Show only relevant subgrids
 task.ZscoreGrid.Visible = isequal(task.MethodDropDown.Value,"zscore");
 task.RangeGrid.Visible = isequal(task.MethodDropDown.Value,"range");
 % Trigger the live editor to update the generated script
 notify(task,"StateChanged");
 end

 function populateWSDropdownItems(~,src,~)
 workspaceVariables = evalin("base","who");
 src.Items = ["select variable"; workspaceVariables];
 end
 end

 methods(Access = protected)
 function setup(task)
 createComponents(task);
 setComponentsToDefault(task);
 updateComponents(task);
 end
 end

 methods
 function [code,outputs] = generateCode(task)
 if isequal(task.InputDataDropDown.Value,"select variable")
 % Not have enough information to generate code,
 % return empty values
 code = "";
 outputs = {};
 return
 end

 outputs = {'normalizedData'};

 code = "% Normalize data";
 code = code + newline + outputs{1} + " = normalize(";
 code = code + "`" + task.InputDataDropDown.Value + "`";

16 Live Editor Task Development

16-16

 if ~isequal(task.MethodDropDown.Value,"zscore") || ...
 ~isequal(task.ZscoreDropDown.Value,"std")
 code = code + ", """ + task.MethodDropDown.Value + """";
 if isequal(task.MethodDropDown.Value,"zscore")
 code = code + ", """ + task.ZscoreDropDown.Value + """";
 elseif isequal(task.MethodDropDown.Value,"range") && ...
 (task.LeftRangeSpinner.Value ~= 0 || ...
 task.RightRangeSpinner.Value ~= 1)
 code = code + ",[" + num2str(task.LeftRangeSpinner.Value) ...
 + ", " + num2str(task.RightRangeSpinner.Value) + "]";
 end
 end

 code = code + ");" + newline + newline + "% Visualize results" + ...
 newline + "figure" + newline;

 if task.InputDataCheckBox.Value
 code = code + "plot(`" + task.InputDataDropDown.Value + ...
 "`, ""Color"",[109 185 226]/255," + ...
 " ""DisplayName"",""Input data"")";
 end

 if task.NormalizedDataCheckBox.Value
 if task.InputDataCheckBox.Value
 code = code + newline + "hold on" + newline;
 end
 code = code + "plot(normalizedData,""Color"",[0 114 189]/255, ..." + ...
 newline + " ""LineWidth"",1.5,""DisplayName"",""Normalized data"")";
 if task.InputDataCheckBox.Value
 code = code + newline + "hold off";
 end
 end

 code = code + newline + "legend";
 end

 function summary = get.Summary(task)
 if isequal(task.InputDataDropDown.Value,"select variable")
 summary = "Normalize vector data";
 else
 switch task.MethodDropDown.Value
 case "zscore"
 methodString = " using z-score";
 case "norm"
 methodString = " using 2-norm";
 case "scale"
 methodString = " using scaling by standard deviation";
 case "range"
 methodString = " by scaling to new range";
 case "center"
 methodString = " by centering the data to 0";
 end
 summary = "Normalized vector `" + task.InputDataDropDown.Value + ...
 "`" + methodString;
 end
 end

 Create Simple Live Editor Task

16-17

 function state = get.State(task)
 state = struct;
 state.InputDataDropDownValue = task.InputDataDropDown.Value;
 state.MethodDropDownValue = task.MethodDropDown.Value;
 state.ZscoreDropDownValue = task.ZscoreDropDown.Value;
 state.LeftRangeSpinnerValue = task.LeftRangeSpinner.Value;
 state.RightRangeSpinnerValue = task.RightRangeSpinner.Value;
 state.InputDataCheckboxValue = task.InputDataCheckBox.Value;
 state.NormalizedDataCheckboxValue = task.NormalizedDataCheckBox.Value;
 end

 function set.State(task,state)
 task.InputDataDropDown.Value = state.InputDataDropDownValue;
 task.MethodDropDown.Value = state.MethodDropDownValue;
 task.ZscoreDropDown.Value = state.ZscoreDropDownValue;
 task.LeftRangeSpinner.Value = state.LeftRangeSpinnerValue;
 task.RightRangeSpinner.Value = state.RightRangeSpinnerValue;
 task.InputDataCheckBox.Value = state.InputDataCheckboxValue;
 task.NormalizedDataCheckBox.Value = state.NormalizedDataCheckboxValue;
 updateComponents(task);
 end

 function reset(task)
 setComponentsToDefault(task);
 updateComponents(task);
 end
 end
end

Next, configure the task metadata by calling the matlab.task.configureMetadata function and
selecting the NormalizeVectorData.m file. The Task Metadata dialog box opens with all of the
required task metadata details prepopulated.

Select OK to use the prepopulated metadata details. MATLAB creates a folder named resources
inside the folder containing your task class definition file. Inside the resources folder, MATLAB

16 Live Editor Task Development

16-18

generates a file named liveTasks.json. Add the folder containing the task class definition file to
the MATLAB path by calling the addpath function or using the Add Folder button in the Set Path
dialog box. To make your task available in the Live Editor in future MATLAB sessions, save the path
by calling the savepath function or using the Save button in the Set Path dialog box.

Add the task to a live script. On a code line, type vector. MATLAB shows a list of suggested
matches.

Select Normalize Vector Data from the list. MATLAB adds the Normalize Vector Data task to the
live script.

See Also
matlab.task.LiveTask | setup | generateCode | reset

Related Examples
• “Live Editor Task Development Overview” on page 16-2
• “Share Live Editor Tasks” on page 16-20

 Create Simple Live Editor Task

16-19

Share Live Editor Tasks
After creating your own Live Editor task, you can share the task for others to use in the Live Editor.

To share a Live Editor task with other users, create and share a folder with these contents:

• The Live Editor task class definition file
• The generated resources folder containing the liveTasks.json file

Instruct the users you are sharing the Live Editor task with to add the shared folder to the MATLAB
path. To add the folder, they can use the addpath function or the Add Folder button in the Set Path
dialog box. To make the task available in the Live Editor in future MATLAB sessions, they must also
save the path using the savepath function or the Save button in the Set Path dialog box.

Note The resources folder does not need to be added to the path. Folders named resources are
not allowed on the MATLAB path.

Once the shared folder is added to the path, users must restart MATLAB. Then, they can see your
Live Editor task in the Live Editor task gallery as well as in automatic code suggestions and
completions.

See Also
Classes
matlab.task.LiveTask

Functions
savepath | addpath

Related Examples
• “Live Editor Task Development Overview” on page 16-2
• “Create Simple Live Editor Task” on page 16-14

16 Live Editor Task Development

16-20

Create UIs with GUIDE

21

GUIDE Preferences and Options

• “GUIDE Preferences” on page 17-2
• “GUIDE Options” on page 17-8

17

GUIDE Preferences
In this section...
“Set Preferences” on page 17-2
“Confirmation Preferences” on page 17-2
“Backward Compatibility Preference” on page 17-4
“All Other Preferences” on page 17-4

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Set Preferences
You can set preferences for GUIDE. From the MATLAB Home tab, in the Environment section, click
Preferences. These preferences apply to GUIDE and to all UIs you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences
GUIDE provides two confirmation preferences. You can choose whether you want to display a
confirmation dialog box when you

• Activate a UI from GUIDE.
• Export a UI from GUIDE.
• Change a callback signature generated by GUIDE.

In the Preferences dialog box, click MATLAB > General > Confirmation Dialogs to access the
GUIDE confirmation preferences. Look for the word GUIDE in the Tool column.

17 GUIDE Preferences and Options

17-2

Prompt to Save on Activate

When you activate a UI from the Layout Editor by clicking the Run button , a dialog box informs
you of the impending save and lets you choose whether or not you want to continue.

Prompt to Save on Export

From the Layout Editor, when you select File > Export to MATLAB-file, a dialog box informs you of
the impending save and lets you choose whether or not you want to continue.

 GUIDE Preferences

17-3

Backward Compatibility Preference
MATLAB Version 5 or Later Compatibility

UI FIG-files created or modified with MATLAB 7.0 or a later version are not automatically compatible
with Version 6.5 and earlier versions. GUIDE automatically generates FIG-files, which are binary files
that contain the UI layout information.

To make a FIG-file backward compatible, from the Layout Editor, select File > Preferences >
General > MAT-Files, and then select MATLAB Version 5 or later (save -v6).

Note The -v6 option discussed in this section is obsolete and will be removed in a future version of
MATLAB.

All Other Preferences
GUIDE provides other preferences, for the Layout Editor interface and for inserting code comments.
In the Preferences dialog box, click GUIDE to access these preferences.

17 GUIDE Preferences and Options

17-4

The following topics describe the preferences in this dialog:

• “Show Names in Component Palette” on page 17-5
• “Show File Extension in Window Title” on page 17-6
• “Show File Path in Window Title” on page 17-6
• “Add Comments for Newly Generated Callback Functions” on page 17-6

Show Names in Component Palette

Displays both icons and names in the component palette, as shown below. When unchecked, the icons
alone are displayed in two columns, with tooltips.

 GUIDE Preferences

17-5

Show File Extension in Window Title

Displays the FIG-file file name with its file extension, .fig, in the Layout Editor window title. If
unchecked, only the file name is displayed.

Show File Path in Window Title

Displays the full file path in the Layout Editor window title. If unchecked, the file path is not
displayed.

Add Comments for Newly Generated Callback Functions

Callbacks are blocks of code that execute in response to actions by the user, such as clicking buttons
or manipulating sliders. By default, GUIDE sets up templates that declare callbacks as functions and
adds comments at the beginning of each one. Most of the comments are similar to the following.
% --- Executes during object deletion, before destroying properties.
function figure1_DeleteFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Some callbacks are added automatically because their associated components are part of the original
GUIDE template that you chose. Other commonly used callbacks are added automatically when you
add components. You can also add callbacks explicitly by selecting them from View > View
Callbacks menu or on the component's context menu.

If you deselect this preference, GUIDE includes comments only for callbacks that are automatically
included to support the original GUIDE template. GUIDE does not include comments for callbacks
subsequently added to the code.

17 GUIDE Preferences and Options

17-6

See “Write Callbacks in GUIDE” on page 19-2 for more information about callbacks and about the
arguments described in the preceding comments.

See Also

Related Examples
• “GUIDE Options” on page 17-8
• “GUIDE Migration Strategies” on page 3-7

 GUIDE Preferences

17-7

GUIDE Options
In this section...
“The GUI Options Dialog Box” on page 17-8
“Resize Behavior” on page 17-8
“Command-Line Accessibility” on page 17-9
“Generate FIG-File and MATLAB File” on page 17-10
“Generate FIG-File Only” on page 17-11

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

The GUI Options Dialog Box
Access the dialog box from the GUIDE Layout Editor by selecting Tools > GUI Options. The options
you select take effect the next time you save your UI.

Resize Behavior
You can control whether users can resize the window and how MATLAB handles resizing. GUIDE
provides three options:

• Non-resizable — Users cannot change the window size (default).

17 GUIDE Preferences and Options

17-8

• Proportional — The software automatically scales the components in the UI in proportion to the
new figure window size.

• Other (Use SizeChangedFcn) — Program the UI to behave in a certain way when users resize
the figure window.

The first two options set figure and component properties appropriately and require no other action.
Other (Use SizeChangedFcn) requires you to write a callback routine that recalculates sizes and
positions of the components based on the new figure size.

Command-Line Accessibility
You can restrict access to a figure window from the command line or from a code file with the GUIDE
Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot, alter the current figure
(the figure specified by the root CurrentFigure property and returned by the gcf command). The
current figure is usually the figure that is most recently created, drawn into, or mouse-clicked. You
can programmatically designate a figure h (where h is its handle) as the current figure in four ways:

1 set(groot,'CurrentFigure',h) — Makes figure h current, but does not change its visibility
or stacking with respect to other figures

2 figure(h) — Makes figure h current, visible, and displayed on top of other figures
3 axes(h) — Makes existing axes h the current axes and displays the figure containing it on top of

other figures
4 plot(h,...), or any plotting function that takes an axes as its first argument, also makes

existing axes h the current axes and displays the figure containing it on top of other figures

The gcf function returns the handle of the current figure.

h = gcf

For a UI created in GUIDE, set the Command-line accessibility option to prevent users from
inadvertently changing the appearance or content of a UI by executing commands at the command
line or from a script or function, such as plot. The following table briefly describes the four options
for Command-line accessibility.

Option Description
Callback (GUI becomes Current Figure
within Callbacks)

The UI can be accessed only from within a
callback. The UI cannot be accessed from the
command line or from a script. This is the default.

Off (GUI never becomes Current Figure) The UI cannot be accessed from a callback, the
command line, or a script, without the handle.

On (GUI may become Current Figure from
Command Line)

The UI can be accessed from a callback, from the
command line, and from a script.

Other (Use settings from Property Inspector) You control accessibility by setting the
HandleVisibility and IntegerHandle
properties from the Property Inspector.

 GUIDE Options

17-9

Generate FIG-File and MATLAB File
Select Generate FIG-file and MATLAB file in the GUI Options dialog box if you want GUIDE to
create both the FIG-file and the UI code file (this is the default). Once you have selected this option,
you can select any of the following items in the frame to configure UI code:

• “Generate Callback Function Prototypes” on page 17-10
• “GUI Allows Only One Instance to Run (Singleton)” on page 17-10
• “Use System Color Scheme for Background” on page 17-10

See “Files Generated by GUIDE” on page 2-2 for information about these files.

Generate Callback Function Prototypes

If you select Generate callback function prototypes in the GUI Options dialog, GUIDE adds
templates for the most commonly used callbacks to the code file for most components. You must then
insert code into these templates.

GUIDE also adds a callback whenever you edit a callback routine from the Layout Editor's right-click
context menu and when you add menus to the UI using the Menu Editor on page 18-40.

See “Write Callbacks in GUIDE” on page 19-2 for general information about callbacks.

Note This option is available only if you first select the Generate FIG-file and MATLAB file option.

GUI Allows Only One Instance to Run (Singleton)

This option allows you to select between two behaviors for the figure window:

• Allow MATLAB software to display only one instance of the UI at a time.
• Allow MATLAB software to display multiple instances of the UI.

If you allow only one instance, the software reuses the existing figure whenever the command to run
your program is executed. If a UI window already exists, the software brings it to the foreground
rather than creating a new figure.

If you clear this option, the software creates a new figure whenever you issue the command to run
the program.

Even if you allow only one instance of a UI to exist, initialization can take place each time you invoke
it from the command line. For example, the code in an OpeningFcn will run each time a GUIDE
program runs unless you take steps to prevent it from doing so. Adding a flag to the handles
structure is one way to control such behavior. You can do this in the OpeningFcn, which can run
initialization code if this flag doesn't yet exist and skip that code if it does.

Note This option is available only if you first select the Generate FIG-file and MATLAB file option.

Use System Color Scheme for Background

The default color used for UI components is system dependent. This option enables you to make the
figure background color the same as the default component background color.

17 GUIDE Preferences and Options

17-10

To ensure that the figure background matches the color of the components, select Use system color
scheme for background in the GUI Options dialog.

Note This option is available only if you first select the Generate FIG-file and MATLAB file option.

Generate FIG-File Only
The Generate FIG-file only option enables you to open figures and UIs to perform limited editing.
These can be any figures and need not be UIs. UIs need not have been generated using GUIDE. This
mode provides limited editing capability and may be useful for UIs generated in MATLAB Versions 5.3
and earlier. See the guide function for more information.

GUIDE selects Generate FIG-file only as the default if you do one of the following:

• Start GUIDE from the command line by providing one or more figure objects as arguments.

guide(f)

In this case, GUIDE selects Generate FIG-file only, even when a code file with a corresponding
name exists in the same folder.

• Start GUIDE from the command line and provide the name of a FIG-file for which no code file with
the same name exists in the same folder.

guide('myfig.fig')

• Use the GUIDE Open Existing GUI tab to open a FIG-file for which no code file with the same
name exists in the same folder.

When you save the figure or UI with Generate FIG-file only selected, GUIDE saves only the FIG-file.
You must update any corresponding code files yourself, as appropriate.

If you want GUIDE to manage the UI code file for you, change the selection to Generate FIG-file
and MATLAB file before saving the UI. If there is no corresponding code file in the same location,
GUIDE creates one. If a code file with the same name as the original figure or UI exists in the same
folder, GUIDE overwrites it. To prevent overwriting an existing file, save the UI using Save As from
the File menu. Select another file name for the two files. GUIDE updates variable names in the new
code file as appropriate.

Callbacks for UIs without Code

Even when there is no code file associated with a UI FIG-file, you can still provide callbacks for UI
components to make them perform actions when used. In the Property Inspector, you can type
callbacks in the form of character vectors, built-in functions, or MATLAB code file names; when your
program runs, it will execute them if possible. If the callback is a file name, it can include arguments
to that function. For example, setting the Callback property of a push button to sqrt(2) causes the
result of the expression to display in the Command Window:

ans =
 1.4142

Any file that a callback executes must be in the current folder or on the MATLAB path. For more
information on how callbacks work, see “Write Callbacks in GUIDE” on page 19-2

 GUIDE Options

17-11

See Also

Related Examples
• “GUIDE Preferences” on page 17-2

17 GUIDE Preferences and Options

17-12

Lay Out a UI Using GUIDE

• “Set the UI Window Size in GUIDE” on page 18-2
• “Add Components to the GUIDE Layout Area” on page 18-4
• “Create Menus for GUIDE Apps” on page 18-40

18

Set the UI Window Size in GUIDE

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Set the size of the UI window by resizing the grid area in the Layout Editor. Click the lower-right
corner of the layout area and drag it until the UI is the desired size. If necessary, make the window
larger.

As you drag the corner handle, the readout in the lower right corner shows the current position of the
UI in pixels.

Setting the Units property to characters (nonresizable UIs) or normalized (resizable UIs) gives
the UI a more consistent appearance across platforms.

Prevent Existing Objects from Resizing with the Window
Existing objects within the UI resize with the window if their Units are set to 'normalized'. To
prevent them from resizing with the window, perform these steps:

1 Set each object’s Units property to an absolute value, such as inches or pixels before enlarging
the UI.

To change the Units property for all the objects in your UI simultaneously, drag a selection box
around all the objects, and then click the Property Inspector button and set the Units.

2 When you finish enlarging the UI, set each object’s Units property back to normalized.

Set the Window Position or Size to an Exact Value
1 In the Layout Editor, open the Property Inspector for the figure by clicking the button (with no

components selected).
2 In the Property Inspector, scroll to the Units property and note whether the current setting is

characters or normalized.
3 Click the down arrow at the far right in the Units row, and select inches.
4 In the Property Inspector, display the Position property elements by clicking the + sign to the

left of Position.

18 Lay Out a UI Using GUIDE

18-2

5 Change the x and y coordinates to the point where you want the lower-left corner of the window
to appear, and its width and height.

6 Reset the Units property to its previous setting, as noted in step 2.

Maximize the Layout Area
You can make maximum use of space within the Layout Editor by hiding the GUIDE toolbar and status
bar, and showing only tool icons, as follows:

1 From the View menu, deselect Show Toolbar.
2 From the View menu, deselect Show Status Bar.
3 Select File > Preferences, and then clear Show names in component palette

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “GUIDE Options” on page 17-8

 Set the UI Window Size in GUIDE

18-3

Add Components to the GUIDE Layout Area
In this section...
“Place Components” on page 18-4
“User Interface Controls” on page 18-8
“Panels and Button Groups” on page 18-22
“Axes” on page 18-26
“Table” on page 18-29
“Resize GUIDE UI Components” on page 18-37

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Place Components
The component palette at the left side of the Layout Editor contains the components that you can add
to your UI.

To place components in the GUIDE layout area and give each component a unique identifier, follow
these steps:

1 Display component names on the palette.

a On the MATLAB Home tab, in the Environment section, click Preferences.
b In the Preferences dialog box, click GUIDE.
c Select Show Names in Component Palette, and then click OK .

2 Place components in the layout area according to your design.

• Drag a component from the palette and drop it in the layout area.
• Click a component in the palette and move the cursor over the layout area. The cursor

changes to a cross. Click again to add the component in its default size, or click and drag to
size the component as you add it.

Once you have defined a UI component in the layout area, selecting it automatically shows it in
the Property Inspector. If the Property Inspector is not open or is not visible, double-clicking a
component raises the inspector and focuses it on that component.

The components listed in the following table have additional considerations; read more about
them in the sections described there.

If You Are Adding... Then...
Panels or button groups See “Add a Component to a Panel or Button

Group” on page 18-6.

18 Lay Out a UI Using GUIDE

18-4

If You Are Adding... Then...
Menus See “Create Menus for GUIDE Apps” on page

18-40
3 Assign a unique identifier to each component. Do this by setting the value of the component Tag

properties. See “Assign an Identifier to Each Component” on page 18-7 for more information.
4 Specify the look and feel of each component by setting the appropriate properties. The following

topics contain specific information.

• “User Interface Controls” on page 18-8
• “Panels and Button Groups” on page 18-22
• “Axes” on page 18-26
• “Table” on page 18-29

This is an example of a UI in the Layout Editor. Components in the Layout Editor are not active.

Use Coordinates to Place Components

The status bar at the bottom of the GUIDE Layout Editor displays:

• Current Point — The current location of the mouse relative to the lower left corner of the grid
area in the Layout Editor.

 Add Components to the GUIDE Layout Area

18-5

• Position — The Position property of the selected component is a vector: [distance from left,
distance from bottom, width, height], where distances are relative to the parent figure, panel, or
button group.

Here is how to interpret the coordinates in the status bar and rulers:

• The Position values updates as you move and resize components. The first two elements in the
vector change as you move the component. The last two elements of the vector change as the
height and width of the component change.

• When no components are selected, the Position value displays the location and size of the figure.

Add a Component to a Panel or Button Group

To add a component to a panel or button group, select the component in the component palette then
move the cursor over the desired panel or button group. The position of the cursor determines the
component's parent.

GUIDE highlights the potential parent as shown in the following figure. The highlight indicates that if
you drop the component or click the cursor, the component will be a child of the highlighted panel,
button group, or figure.

18 Lay Out a UI Using GUIDE

18-6

Assign a unique identifier to each component in your panel or button group by setting the value of its
Tag property. See “Assign an Identifier to Each Component” on page 18-7 for more information.

Include Existing Components in Panels and Button Groups

When you add a new component or drag an existing component to a panel or button group, it will
become a member, or child, of the panel or button group automatically, whether fully or partially
enclosed by it. However, if the component is not entirely contained in the panel or button group, it
appears to be clipped in the Layout Editor and in the running app.

You can add a new panel or button group to a UI in order to group any of its existing controls. In
order to include such controls in a new panel or button group, do the following. The instructions refer
to panels, but you do the same for components inside button groups.

1 Select the New Panel or New Button Group tool and drag out a rectangle to have the size and
position you want.

The panel will not obscure any controls within its boundary unless they are axes, tables, or other
panels or button groups. Only overlap panels you want to nest, and then make sure the overlap is
complete.

2 You can use Send Backward or Send to Back on the Layout menu to layer the new panel
behind components you do not want it to obscure, if your layout has this problem. As you add
components to it or drag components into it, the panel will automatically layer itself behind them.

Now is a good time to set the panel's Tag and String properties to whatever you want them to
be, using the Property Inspector.

3 Open the Object Browser from the View menu and find the panel you just added. Use this tool to
verify that it contains all the controls you intend it to group together. If any are missing, perform
the following steps.

4 Drag controls that you want to include but don't fit within the panel inside it to positions you
want them to have. Also, slightly move controls that are already in their correct positions to
group them with the panel.

The panel highlights when you move a control, indicating it now contains the control. The Object
Browser updates to confirm the relationship. If you now move the panel, its child controls move
with it.

Tip You need to move controls with the mouse to register them with the surrounding panel or
button group, even if only by a pixel or two. Selecting them and using arrow keys to move them
does not accomplish this. Use the Object Browser to verify that controls are properly nested.

See “Panels and Button Groups” on page 18-22 for more information on how to incorporate panels
and button groups into a UI.

Assign an Identifier to Each Component

Use the Tag property to assign a unique and meaningful identifier to your components.

When you place a component in the layout area, GUIDE assigns a default value to the Tag property.
Before saving the UI, replace this value with a name or abbreviation that reflects the role of the
component in the UI.

 Add Components to the GUIDE Layout Area

18-7

The name you assign is used by code to identify the component and must be unique in the UI. To set
the Tag property:

1 Select View > Property Inspector or click the Property Inspector button .
2 In the layout area, select the component for which you want to set Tag.
3 In the Property Inspector, select Tag and then replace the value with the name you want to use

as the identifier. In the following figure, Tag is set to pushbutton1.

User Interface Controls
User interface controls include push buttons, toggle buttons, sliders, radio buttons, edit text controls,
static text controls, pop-up menus, check boxes, and list boxes.

To define user interface controls, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by

selecting View > Property Inspector or by clicking the Property Inspector button .
2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface controls and offer a simple
example for each kind of control:

• “Commonly Used Properties” on page 18-8
• “Push Button” on page 18-9
• “Slider” on page 18-10
• “Radio Button” on page 18-12
• “Check Box” on page 18-13
• “Edit Text” on page 18-14
• “Static Text” on page 18-15
• “Pop-Up Menu” on page 18-16
• “List Box” on page 18-18
• “Toggle Button” on page 18-20

Commonly Used Properties

The most commonly used properties needed to describe a user interface control are shown in the
following table. Instructions for a particular control may also list properties that are specific to that
control.

18 Lay Out a UI Using GUIDE

18-8

Property Value Description
Enable on, inactive, off. Default is

on.
Determines whether the control
is available to the user

Max Scalar. Default is 1. Maximum value. Interpretation
depends on the type of
component.

Min Scalar. Default is 0. Minimum value. Interpretation
depends on the type of
component.

Position 4-element vector: [distance from
left, distance from bottom, width,
height].

Size of the component and its
location relative to its parent.

String Character vector (for example,
'button1'). Can an also be a
character array or a cell array of
character vectors.

Component label. For list boxes
and pop-up menus it is a list of
the items.

Units characters, centimeters,
inches, normalized, pixels,
points. Default is characters.

Units of measurement used to
interpret the Position property
vector

Value Scalar or vector Value of the component.
Interpretation depends on the
type of component.

For a complete list of properties and for more information about the properties listed in the table, see
Uicontrol.

Push Button

To create a push button with label Button 1, as shown in this figure:

• Specify the push button label by setting the String property to the desired label, in this case,
Button 1.

 Add Components to the GUIDE Layout Area

18-9

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The push button accommodates only a single line of text. If you specify more than one line, only
the first line is shown. If you create a push button that is too narrow to accommodate the specified
String property value, MATLAB truncates the value with an ellipsis.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

• To add an image to a push button, assign the button's CData property as an m-by-n-by-3 array of
RGB values that defines a truecolor image. You must do this programmatically in the opening
function of the code file. For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);

where pushbutton1 is the push button's Tag property.

See ind2rgb for information on converting a matrix X and corresponding colormap, i.e., an (X,
MAP) image, to RGB (truecolor) format.

Slider

To create a slider as shown in this figure:

18 Lay Out a UI Using GUIDE

18-10

• Specify the range of the slider by setting its Min property to the minimum value of the slider and
its Max property to the maximum value. The Min property must be less than Max.

• Specify the value indicated by the slider when it is created by setting the Value property to the
appropriate number. This number must be less than or equal to Max and greater than or equal to
Min. If you specify Value outside the specified range, the slider is not displayed.

• The slider Value changes by a small amount when a user clicks the arrow button, and changes by
a larger amount when the user clicks the trough (also called the channel). Control how the slider
responds to these actions by setting the SliderStep property. Specify SliderStep as a two-
element vector, [minor_step major_step], where minor_step is less than or equal to
major_step. Because specifying very small values can cause unpredictable slider behavior, make
both minor_step and major_step greater than 1e-6. Set major_step to the proportion of the
range that clicking the trough moves the slider thumb. Setting it to 1 or higher causes the thumb
to move to Max or Min when the trough is clicked.

As major_step increases, the thumb grows longer. When major_step is 1, the thumb is half as
long as the trough. When major_step is greater than 1, the thumb continues to grow, slowly
approaching the full length of the trough. When a slider serves as a scroll bar, you can uses this
behavior to indicate how much of the document is currently visible by changing the value of
major_step.

• If you want to set the location or size of the component to an exact value, then modify its
Position property.

The slider component provides no text description or data entry capability. Use a “Static Text” on
page 18-15 component to label the slider. Use an “Edit Text” on page 18-14 component to
enable a user to input a value to apply to the slider.

On Mac platforms, the height of a horizontal slider is constrained. If the height you set in the
position vector exceeds this constraint, the displayed height of the slider is the maximum allowed.
The height element of the position vector is not changed.

 Add Components to the GUIDE Layout Area

18-11

Radio Button

To create a radio button with label Indent nested functions, as shown in this figure:

• Specify the radio button label by setting the String property to the desired label, in this case,
Indent nested functions.

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify more than one line, only
the first line is shown. If you create a radio button that is too narrow to accommodate the
specified String property value, MATLAB software truncates the value with an ellipsis.

• Create the radio button with the button selected by setting its Value property to the value of its
Max property (default is 1). Set Value to Min (default is 0) to leave the radio button unselected.
Correspondingly, when the user selects the radio button, the software sets Value to Max, and to
Min when the user deselects it.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

• To add an image to a radio button, assign the button's CData property an m-by-n-by-3 array of
RGB values that defines a truecolor image. You must do this programmatically in the opening
function of the code file. For example, the array img defines a 16-by-24-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);

18 Lay Out a UI Using GUIDE

18-12

To manage exclusive selection of radio buttons and toggle buttons, put them in a button group.
See “Button Group” on page 18-24 for more information.

Check Box

To create a check box with label Display file extension that is initially checked, as shown in this
figure:

• Specify the check box label by setting the String property to the desired label, in this case,
Display file extension.

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a component width that is
too small to accommodate the specified String property value, MATLAB software truncates the
value with an ellipsis.

 Add Components to the GUIDE Layout Area

18-13

• Create the check box with the box checked by setting the Value property to the value of the Max
property (default is 1). Set Value to Min (default is 0) to leave the box unchecked.
Correspondingly, when the user clicks the check box, the software sets Value to Max when the
user checks the box and to Min when the user clears it.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

Edit Text

To create an edit text component that displays the initial text Enter your name here, as shown in
this figure:

• Specify the text to be displayed when the edit text component is created by setting the String
property to the desired value, in this case, Enter your name here.

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

• To enable multiple-line input, specify the Max and Min properties so that their difference is
greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min default is 0. MATLAB
software wraps the displayed text and adds a scroll bar if necessary. On all platforms, when the
user enters a multiline text box via the Tab key, the editing cursor is placed at its previous location
and no text highlights.

18 Lay Out a UI Using GUIDE

18-14

If Max-Min is less than or equal to 1, the edit text component allows only a single line of input. If
you specify a component width that is too small to accommodate the specified text, MATLAB
displays only part of that text. The user can use the arrow keys to move the cursor through the
text. On all platforms, when the user enters a single-line text box via the Tab key, the entire
contents is highlighted and the editing cursor is at the end of the text.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

• You specify the text font to display in the edit box by typing the name of a font residing on your
system into the FontName entry in the Property Inspector. On Microsoft® Windows platforms, the
default is MS Sans Serif; on Macintosh and UNIX® platforms, the default is Helvetica.

Tip To find out what fonts are available, type uisetfont at the MATLAB prompt; a dialog
displays containing a list box from which you can select and preview available fonts. When you
select a font, its name and other characteristics are returned in a structure, from which you can
copy the FontName and paste it into the Property Inspector. Not all fonts listed may be available
on other systems.

Static Text

To create a static text component with text Select a data set, as shown in this figure:

 Add Components to the GUIDE Layout Area

18-15

• Specify the text that appears in the component by setting the component String property to the
desired text, in this case Select a data set.

To display the & character in a list item, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

If your component is not wide enough to accommodate the specified value, MATLAB wraps the
displayed text.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

• You can specify a text font, including its FontName, FontWeight, FontAngle, FontSize, and
FontUnits properties. For details, see the previous topic, “Edit Text” on page 18-14.

Pop-Up Menu

To create a pop-up menu (also known as a drop-down menu or combo box) with items one, two,
three, and four, as shown in this figure:

18 Lay Out a UI Using GUIDE

18-16

• Specify the pop-up menu items to be displayed by setting the String property to the desired
items. Click the

button to the right of the property name to open the Property Inspector editor.

 Add Components to the GUIDE Layout Area

18-17

To display the & character in a menu item, use two & characters. The words remove, default,
and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the menu items,
MATLAB truncates those items with an ellipsis.

• To select an item when the component is created, set Value to a scalar that indicates the index of
the selected list item, where 1 corresponds to the first item in the list. If you set Value to 2, the
menu looks like this when it is created:

• If you want to set the position and size of the component to exact values, then modify its
Position property. The height of a pop-up menu is determined by the font size. The height you
set in the position vector is ignored.

• The pop-up menu does not let you add a label. Use a “Static Text” on page 18-15 component to
label the pop-up menu.

List Box

To create a list box with items one, two, three, and four, as shown in this figure:

18 Lay Out a UI Using GUIDE

18-18

• Specify the list of items to be displayed by setting the String property to the desired list. Use the

Property Inspector editor to enter the list. You can open the editor by clicking the button to
the right of the property name.

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the specified list items,
MATLAB software truncates those items with an ellipsis.

 Add Components to the GUIDE Layout Area

18-19

• Specify selection by using the Value property together with the Max and Min properties.

• To select a single item when the component is created, set Value to a scalar that indicates the
index of the selected list item, where 1 corresponds to the first item in the list.

• To select more than one item when the component is created, set Value to a vector of indices
of the selected items. Value = [1,3] results in the following selection.

To enable selection of more than one item, you must specify the Max and Min properties so that
their difference is greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min
default is 0.

• If you want no initial selection, set the Max and Min properties to enable multiple selection,
i.e., Max - Min > 1, and then set the Value property to an empty matrix [].

• If the list box is not large enough to display all list entries, you can set the ListBoxTop property
to the index of the item you want to appear at the top when the component is created.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

• The list box does not provide for a label. Use a “Static Text” on page 18-15 component to label the
list box.

Toggle Button

To create a toggle button with label Left/Right Tile, as shown in this figure:

18 Lay Out a UI Using GUIDE

18-20

• Specify the toggle button label by setting its String property to the desired label, in this case,
Left/Right Tile.

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify more than one line, only
the first line is shown. If you create a toggle button that is too narrow to accommodate the
specified String value, MATLAB truncates the text with an ellipsis.

• Create the toggle button with the button selected (depressed) by setting its Value property to the
value of its Max property (default is 1). Set Value to Min (default is 0) to leave the toggle button
unselected (raised). Correspondingly, when the user selects the toggle button, MATLAB software
sets Value to Max, and to Min when the user deselects it. The following figure shows the toggle
button in the depressed position.

• If you want to set the position or size of the component to an exact value, then modify its
Position property.

• To add an image to a toggle button, assign the button's CData property an m-by-n-by-3 array of
RGB values that defines a truecolor image. You must do this programmatically in the opening
function of the code file. For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

 Add Components to the GUIDE Layout Area

18-21

img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);

where togglebutton1 is the toggle button's Tag property.

To manage exclusive selection of radio buttons and toggle buttons, put them in a button group.
See ButtonGroup Properties for more information.

Panels and Button Groups
Panels and button groups are containers that arrange UI components into groups. If you move the
panel or button group, its children move with it and maintain their positions relative to the panel or
button group.

To define panels and button groups, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by
selecting View > Property Inspector or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of panels and button groups and offer a simple
example for each component.

• “Commonly Used Properties” on page 18-22
• “Panel” on page 18-23
• “Button Group” on page 18-24

Commonly Used Properties

The most commonly used properties needed to describe a panel or button group are shown in the
following table:

Property Values Description
Position 4-element vector: [distance from

left, distance from bottom,
width, height].

Size of the component and its
location relative to its parent.

Title Character vector (for example,
'Start').

Component label.

TitlePosition lefttop, centertop,
righttop, leftbottom,
centerbottom, rightbottom.
Default is lefttop.

Location of title in relation to
the panel or button group.

18 Lay Out a UI Using GUIDE

18-22

Property Values Description
Units characters, centimeters,

inches, normalized, pixels,
points. Default is
characters.

Units of measurement used to
interpret the Position
property vector

For a complete list of properties and for more information about the properties listed in the table, see
the Panel Properties and ButtonGroup Properties.

Panel

To create a panel with title My Panel as shown in the following figure:

• Specify the panel title by setting the Title property to the desired value, in this case My Panel.

 Add Components to the GUIDE Layout Area

18-23

To display the & character in the title, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash character
(\). For example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available TitlePosition property
values from the pop-up menu, in this case lefttop. You can position the title at the left, middle,
or right of the top or bottom of the panel.

• If you want to set the position or size of the panel to an exact value, then modify its Position
property.

Button Group

To create a button group with title My Button Group as shown in the following figure:

18 Lay Out a UI Using GUIDE

18-24

• Specify the button group title by setting the Title property to the desired value, in this case My
Button Group.

To display the & character in the title, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
characters (\). For example, \remove yields remove.

• Specify the location of the button group title by selecting one of the available TitlePosition
property values from the pop-up menu, in this case lefttop. You can position the title at the left,
middle, or right of the top or bottom of the button group.

 Add Components to the GUIDE Layout Area

18-25

• If you want to set the position or size of the button group to an exact value, then modify its
Position property.

Axes
Axes allow you to display graphics such as graphs and images using commands such as: plot, surf,
line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by
selecting View > Property Inspector or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of axes and offer a simple example.

• “Commonly Used Properties” on page 18-26
• “Create Axes” on page 18-27

Commonly Used Properties

The most commonly used properties needed to describe an axes are shown in the following table:

Property Values Description
NextPlot add, replace,

replacechildren. Default is
replace

Specifies whether plotting adds
graphics, replaces graphics and
resets axes properties to
default, or replaces graphics
only.

18 Lay Out a UI Using GUIDE

18-26

Property Values Description
Position 4-element vector: [distance from

left, distance from bottom,
width, height].

Size of the component and its
location relative to its parent.

Units normalized, centimeters,
characters, inches, pixels,
points. Default is
normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties listed in the table, see
Axes.

See commands such as the following for more information on axes objects: plot, surf, line, bar,
polar, pie, contour, imagesc, and mesh.

Many of these graphing functions reset axes properties by default, according to the setting of its
NextPlot property, which can cause unwanted behavior, such as resetting axis limits and removing
axes context menus and callbacks. See “Create Axes” on page 18-27 for information about setting
the NextPlot property.

Create Axes

Here is an axes in a GUIDE app:

Use these guidelines when you create axes objects in GUIDE:

• Allow for tick marks to be placed outside the box that appears in the Layout Editor. The axes
above looks like this in the layout editor; placement allows space at the left and bottom of the axes
for tick marks. Functions that draw in the axes update the tick marks appropriately.

 Add Components to the GUIDE Layout Area

18-27

• Use the title, xlabel, ylabel, zlabel, and text functions in the code file to label an axes
component. For example,

xlh = (axes_handle,'Years')

labels the X-axis as Years. The handle of the X-axis label is xlh.

The words remove, default, and factory (case sensitive) are reserved. To use one of these in
component text, prepend a backslash character (\). For example, \remove yields remove.

• If you want to set the position or size of the axes to an exact value, then modify its Position
property.

• If you customize axes properties, some of them (or example, callbacks, font characteristics, and
axis limits and ticks) may get reset to default every time you draw a graph into the axes when the
NextPlot property has its default value of 'replace'. To keep customized properties as you
want them, set NextPlot to 'replacechildren' in the Property Inspector, as shown here.

18 Lay Out a UI Using GUIDE

18-28

Table
Tables enable you to display data in a two dimensional table. You can use the Property Inspector to
get and set the object property values.

Commonly Used Properties

The most commonly used properties of a table component are listed in the table below. These are
grouped in the order they appear in the Table Property Editor. Please refer to uitable
documentation for detail of all the table properties:

Group Property Values Description
Column ColumnName 1-by-n cell array of

character vectors |
{'numbered'} | empty
matrix ([])

The header label of the
column.

ColumnFormat Cell array of character
vectors

Determines display and
editability of columns

ColumnWidth 1-by-n cell array or
'auto'

Width of each column in
pixels; individual
column widths can also
be set to 'auto'

ColumnEditable logical 1-by-n matrix |
scalar logical value |
empty matrix ([])

Determines data in a
column as editable

Row RowName 1-by-n cell array of
character vectors

Row header label names

 Add Components to the GUIDE Layout Area

18-29

Group Property Values Description
Color BackgroundColor n-by-3 matrix of RGB

triples
Background color of
cells

RowStriping {on} | off Color striping of table
rows

Data Data Matrix or cell array of
numeric, logical, or
character data

Table data.

Create a Table

To create a UI with a table in GUIDE as shown, do the following:

Drag the table icon on to the Layout Editor and right click in the table. From the table’s context
menu, select Table Property Editor. You can also select Table Property Editor from the Tools
menu when you select a table by itself.

18 Lay Out a UI Using GUIDE

18-30

Use the Table Property Editor

When you open it this way, the Table Property Editor displays the Column pane. You can also open it

from the Property Inspector by clicking one of its Table Property Editor icons , in which case the
Table Property Editor opens to display the pane appropriate for the property you clicked.

Clicking items in the list on the left hand side of the Table Property Editor changes the contents of
the pane to the right . Use the items to activate controls for specifying the table's Columns, Rows,
Data, and Color options.

The Columns and Rows panes each have a data entry area where you can type names and set
properties on a per-column or per-row basis. You can edit only one row or column definition at a time.
These panes contain a vertical group of five buttons for editing and navigating:

Button Purpose Accelerator Keys
 Windows Macintosh
Insert Inserts a new column or row definition entry

below the current one
Insert Insert

Delete Deletes the current column or row definition
entry (no undo)

Ctrl+D Cmd+D

Copy Inserts a Copy of the selected entry in a new
row below it

Ctrl+P Cmd+P

 Add Components to the GUIDE Layout Area

18-31

Button Purpose Accelerator Keys
 Windows Macintosh
Up Moves selected entry up one row Ctrl+

Up Arrow
Cmd+
Up Arrow

Down Moves selected entry down one row Ctrl+
Down Arrow

Cmd+
Down Arrow

Keyboard equivalents only operate when the cursor is in the data entry area. In addition to those
listed above, typing Ctrl+T or Cmd+T selects the entire field containing the cursor for editing (if the
field contains text).

To save changes to the table you make in the Table Property Editor, click OK, or click Apply commit
changes and keep on using the Table Property Editor.

Set Column Properties

Click Insert to add two more columns.

Select Show names entered below as the column headers and set the ColumnName by entering
Rate, Amount, Available, and Fixed/Adj in Name group. for the Available and Fixed/Adj columns set
the ColumnEditable property to on. Lastly set the ColumnFormat for the four columns.

18 Lay Out a UI Using GUIDE

18-32

For the Rate column, select Numeric. For the Amount Column select Custom and in the Custom
Format Editor, choose Bank.

 Add Components to the GUIDE Layout Area

18-33

Leave the Available column at the default value. This allows MATLAB to chose based on the value of
the Data property of the table. For the Fixed/Adj column select Choice List to create a pop-up
menu. In the Choice List Editor, click Insert to add a second choice and type Fixed and Adjustable as
the 2 choices.

18 Lay Out a UI Using GUIDE

18-34

Note For a user to select items from a choice list, the ColumnEditable property of the column that
the list occupies must be set to 'true'. The pop-up control only appears when the column is
editable.

Set Row Properties

In the Row tab, leave the default RowName, Show numbered row headers.

Set Data Properties

Use the Data property to specify the data in the table. Create the data in the command window
before you specify it in GUIDE. For this example, type:

dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

In the Table Property Editor, select the data that you defined and select Change data value to the
selected workspace variable below.

 Add Components to the GUIDE Layout Area

18-35

Set Color Properties

Specify the BackgroundColor and RowStriping for your table in the Color tab.

18 Lay Out a UI Using GUIDE

18-36

You can change other uitable properties to the table via the Property Inspector.

Resize GUIDE UI Components
You can resize components in one of the following ways:

• “Drag a Corner of the Component” on page 18-37
• “Set the Component's Position Property” on page 18-37

Drag a Corner of the Component

Select the component you want to resize. Click one of the corner handles and drag it until the
component is the desired size.

Set the Component's Position Property

Select one or more components that you want to resize. Then select View > Property Inspectoror
click the Property Inspector button .

 Add Components to the GUIDE Layout Area

18-37

1 In the Property Inspector, scroll to the Units property and note whether the current setting is
characters or normalized. Click the button next to Units and then change the setting to
inches from the pop-up menu.

2 Click the + sign next to Position. The Property Inspector displays the elements of the
Position property.

18 Lay Out a UI Using GUIDE

18-38

3 Type the width and height you want the components to be.
4 Reset the Units property to its previous setting, either characters or normalized.

To select multiple components, they must have the same parent. That is, they must be contained in
the same figure, panel, or button group. Setting the Units property to characters (nonresizable
UIs) or normalized (resizable UIs) gives the UI a more consistent appearance across platforms.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Write Callbacks in GUIDE” on page 19-2
• “Callbacks for Specific Components” on page 19-14
• “Lay Out Apps in App Designer Design View” on page 5-2
• “App Building Components” on page 4-2

 Add Components to the GUIDE Layout Area

18-39

Create Menus for GUIDE Apps
In this section...
“Menus for the Menu Bar” on page 18-40
“Context Menus” on page 18-47

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

You can use GUIDE to create menu bars (containing pull-down menus) as well as context menus that
you attach to components. You can create both types of menus using the Menu Editor. Access the
Menu Editor from the Tools menu or click the Menu Editor button .

Menus for the Menu Bar
• “How Menus Affect Figure Docking” on page 18-41
• “Add Standard Menus to the Menu Bar” on page 18-42
• “Create a Menu” on page 18-42
• “Add Items to a Menu” on page 18-43

18 Lay Out a UI Using GUIDE

18-40

• “Additional Drop-Down Menus” on page 18-45
• “Cascading Menus” on page 18-45

When you create a drop-down menu, GUIDE adds its title to the menu bar. You then can create menu
items for that menu. Each menu item can have a cascading menu, also known as a submenu, and
these items can have cascading menus, and so on.

How Menus Affect Figure Docking

By default, when you create a UI with GUIDE, it does not create a menu bar for that UI. You might
not need menus for your UI, but if you want the user to be able to dock or undock the UI window, it
must contain a menu bar or a toolbar. This is because docking is controlled by the docking icon, a
small curved arrow near the upper-right corner of the menu bar or the toolbar, as the following
illustration shows.

Figure windows with a standard menu bar also have a Desktop menu from which the user can dock
and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item, use the Property
Inspector to set the figure property DockControls to 'on'. You must also set the MenuBar and/or
ToolBar figure properties to 'figure' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is 'normal', but if you
change it to 'docked', then the following applies:

• The UI window opens docked in the desktop when you run it.
• The DockControls property is set to 'on' and cannot be turned off until WindowStyle is no

longer set to 'docked'.
• If you undock a UI window created with WindowStyle 'docked', it will have not have a docking

arrow unless the figure displays a menu bar or a toolbar (either standard or customized). When it
has no docking arrow, users can undock it from the desktop, but will be unable to redock it there.

However, when you provide your own menu bar or toolbar using GUIDE, it can display the docking
arrow if you want the UI window to be dockable.

Note UIs that are modal dialogs (figures with WindowStyle set to 'modal') cannot have menu
bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle property
descriptions in Figure.

 Create Menus for GUIDE Apps

18-41

Add Standard Menus to the Menu Bar

The figure MenuBar property controls whether your UI displays the MATLAB standard menus on the
menu bar. GUIDE initially sets the value of MenuBar to none. If you want your UI to display the
MATLAB standard menus, use the Property Inspector to set MenuBar to figure.

• If the value of MenuBar is none, GUIDE automatically adds a menu bar that displays only the
menus you create.

• If the value of MenuBar is figure, the UI displays the MATLAB standard menus and GUIDE adds
the menus you create to the right side of the menu bar.

In either case, you can enable the user to dock and undock the window by setting the figure's
DockControls property to 'on'.

Create a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu title, Untitled 1,
appears in the left pane of the dialog box.

By default, GUIDE selects the Menu Bar tab when you open the Menu Editor.
2 Click the menu title to display a selection of menu properties in the right pane.

18 Lay Out a UI Using GUIDE

18-42

3 Fill in the Text and Tag fields for the menu. For example, set Text to File and set Tag to
file_menu. Click outside the field for the change to take effect.

Text is a text label for the menu item. To display the & character in a label, use two & characters.
The words remove, default, and factory (case sensitive) are reserved. To use one of these as
labels, prepend a backslash character (\). For example, \remove yields remove.

Tag is a character vector that serves as an identifier for the menu object. It is used in the code to
identify the menu item and must be unique in your code file.

Add Items to a Menu

Use the New Menu Item tool to create menu items that are displayed in the drop-down menu.

1 Add an Open menu item under File, by selecting File then clicking the New Menu Item
button in the toolbar. A temporary numbered menu item label, Untitled, appears.

 Create Menus for GUIDE Apps

18-43

2 Fill in the Text and Tag fields for the new menu item. For example, set Text to Open and set Tag
to menu_file_open. Click outside the field for the change to take effect.

You can also

18 Lay Out a UI Using GUIDE

18-44

• Choose an alphabetic keyboard accelerator for the menu item with the Accelerator pop-up menu.
In combination with Ctrl, this is the keyboard equivalent for a menu item that does not have a
child menu. Note that some accelerators may be used for other purposes on your system and that
other actions may result.

• Display a separator above the menu item by checking Separator above this item.
• Display a check next to the menu item when the menu is first opened by checking Check mark

this item. A check indicates the current state of the menu item. See the example in “Add Items to
the Context Menu” on page 18-48.

• Enable this item when the menu is first opened by checking Enable this item. This allows the
user to select this item when the menu is first opened. If you clear this option, the menu item
appears dimmed when the menu is first opened, and the user cannot select it.

• Specify the Callback function that executes when the users selects the menu item. If you have not
yet saved the UI, the default value is %automatic. When you save the UI, and if you have not
changed this field, GUIDE automatically sets the value using a combination of the Tag field and
the UI file name. See “Menu Item” on page 19-21 for more information about specifying this field
and for programming menu items.

The View button displays the callback, if there is one, in an editor. If you have not yet saved the
UI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties, by clicking the More
Properties button. For detailed information about the properties, see Menu Properties.

See “Menu Item” on page 19-21 and “How to Update a Menu Item Check” on page 19-23 for
programming information and basic examples.

Additional Drop-Down Menus

To create additional drop-down menus, use the New Menu button in the same way you did to create
the File menu. For example, the following figure also shows an Edit drop-down menu.

Cascading Menus

To create a cascading menu, select the menu item that will be the title for the cascading menu, then
click the New Menu Item button. In the example below, Edit is a cascading menu.

 Create Menus for GUIDE Apps

18-45

See “Menu Item” on page 19-21 for information about programming menu items.

The following Menu Editor illustration shows three menus defined for the figure menu bar.

When you run the app, the menu titles appear in the menu bar.

18 Lay Out a UI Using GUIDE

18-46

Context Menus
A context menu is displayed when a user right-clicks the object for which the menu is defined. The
Menu Editor enables you to define context menus and associate them with objects in the layout. The
process has three steps:

1 “Create the Parent Menu” on page 18-47
2 “Add Items to the Context Menu” on page 18-48
3 “Associate the Context Menu with an Object” on page 18-51

See “Menus for the Menu Bar” on page 18-40 for information about defining menus in general. See
“Menu Item” on page 19-21 for information about defining local callback functions for your menus.

Create the Parent Menu

All items in a context menu are children of a menu that is not displayed on the figure menu bar. To
define the parent menu:

1 Select the Menu Editor's Context Menus tab and select the New Context Menu button from the
toolbar.

 Create Menus for GUIDE Apps

18-47

2 Select the menu, and in the Tag field type the context menu tag (axes_context_menu in this
example).

Add Items to the Context Menu

Use the New Menu Item button to create menu items that are displayed in the context menu.

18 Lay Out a UI Using GUIDE

18-48

1 Add a Blue background color menu item to the menu by selecting axes_context_menu and
clicking the New Menu Item tool. A temporary numbered menu item label, Untitled, appears.

2 Fill in the Text and Tag fields for the new menu item. For example, set Text to Blue
background color and set Tag to blue_background. Click outside the field for the change to
take effect.

 Create Menus for GUIDE Apps

18-49

You can also modify menu items in these ways:

• Display a separator above the menu item by checking Separator above this item.
• Display a check next to the menu item when the menu is first opened by checking Check mark

this item. A check indicates the current state of the menu item. See the example in “Add Items to
the Context Menu” on page 18-48. See “How to Update a Menu Item Check” on page 19-23 for a
code example.

• Enable this item when the menu is first opened by checking Enable this item. This allows the
user to select this item when the menu is first opened. If you clear this option, the menu item
appears dimmed when the menu is first opened, and the user cannot select it.

• Specify a Callback for the menu that performs the action associated with the menu item. If you
have not yet saved the UI, the default value is %automatic. When you save the UI, and if you
have not changed this field, GUIDE automatically creates a callback in the code file using a
combination of the Tag field and the UI file name. The callback's name does not display in the
Callback field of the Menu Editor, but selecting the menu item does trigger it.

You can also type a command into the Callback field. It can be any valid MATLAB expression or
command. For example, this command

set(gca, 'Color', 'y')

sets the current axes background color to yellow. However, the preferred approach to performing
this operation is to place the callback in the code file. This avoids the use of gca, which is not
always reliable when several figures or axes exist. Here is a version of this callback coded as a
function in the code file:

function axesyellow_Callback(hObject, eventdata, handles)
% hObject handle to axesyellow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

18 Lay Out a UI Using GUIDE

18-50

% handles structure with handles and user data (see GUIDATA)
set(handles.axes1,'Color','y')

This code sets the background color of the axes with Tag axes1 no matter to what object the
context menu is attached to.

If you enter a callback value in the Menu Editor, it overrides the callback for the item in the code
file, if any has been saved. If you delete a value that you entered in the Callback field, the
callback for the item in the code file is executed when the user selects that item in the UI.

See “Menu Item” on page 19-21 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you have not yet saved the
UI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties except callbacks, by
clicking the More Properties button. For detailed information about these properties, see
ContextMenu Properties.

Associate the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the context menu.
2 Use the Property Inspector to set this object's ContextMenu property to the name of the desired

context menu.

The following figure shows the ContextMenu property for the axes object with Tag property axes1.

In the code file, complete the local callback function for each item in the context menu. Each callback
executes when a user selects the associated context menu item. See “Menu Item” on page 19-21 for
information on defining the syntax.

See “How to Update a Menu Item Check” on page 19-23 for programming information and basic
examples.

 Create Menus for GUIDE Apps

18-51

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 19-2
• “Callbacks for Specific Components” on page 19-14
• “App Building Components” on page 4-2

18 Lay Out a UI Using GUIDE

18-52

Programming a GUIDE App

• “Write Callbacks in GUIDE” on page 19-2
• “Callbacks for Specific Components” on page 19-14

19

Write Callbacks in GUIDE

In this section...
“Callbacks for Different User Actions” on page 19-2
“GUIDE-Generated Callback Functions and Property Values” on page 19-4
“GUIDE Callback Syntax” on page 19-4
“Share Data Among GUIDE Callbacks” on page 19-5
“GUIDE Example: Share Slider Data Using guidata” on page 19-10
“GUIDE Example: Share Data Between Two Apps” on page 19-10
“GUIDE Example: Share Data Among Three Apps” on page 19-11
“Renaming and Removing GUIDE-Generated Callbacks” on page 19-13

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Callbacks for Different User Actions
UI and graphics components have certain properties that you can associate with specific callback
functions. Each of these properties corresponds to a specific user action. For example, a uicontrol has
a property called Callback. You can set the value of this property to be a handle to a callback
function, an anonymous function, or a character vector containing a MATLAB expression. Setting this
property makes your app respond when the user interacts with the uicontrol. If the Callback
property has no specified value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the callback
function, and the most common UI and graphics components that use them.

Callback
Property

User Action Components That Use This
Property

ButtonDownFcn End user presses a mouse button while
the pointer is on the component or
figure.

axes, figure, uibuttongroup,
uicontrol, uipanel, uitable,

Callback End user triggers the component. For
example: selecting a menu item,
moving a slider, or pressing a push
button.

uicontextmenu, uicontrol, uimenu

CellEditCallba
ck

End user edits a value in a table whose
cells are editable.

uitable

CellSelectionC
allback

End user selects cells in a table. uitable

19 Programming a GUIDE App

19-2

Callback
Property

User Action Components That Use This
Property

ClickedCallbac
k

End user clicks the push tool or toggle
tool with the left mouse button.

uitoggletool, uipushtool

CloseRequestFc
n

The figure closes. figure

CreateFcn Callback executes when MATLAB
creates the object, but before it is
displayed.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool, uitoolbar

DeleteFcn Callback executes just before MATLAB
deletes the figure.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool, uitoolbar

KeyPressFcn End user presses a keyboard key while
the pointer is on the object.

figure, uicontrol, uipanel,
uipushtool, uitable, uitoolbar

KeyReleaseFcn End user releases a keyboard key while
the pointer is on the object.

figure, uicontrol, uitable

OffCallback Executes when the State of a toggle
tool changes to 'off'.

uitoggletool

OnCallback Executes when the State of a toggle
tool changes to 'on'.

uitoggletool

SizeChangedFcn End user resizes a button group, figure,
or panel whose Resize property is
'on'.

figure, uipanel, uibuttongroup

SelectionChang
edFcn

End user selects a different radio
button or toggle button within a button
group.

uibuttongroup

WindowButtonDo
wnFcn

End user presses a mouse button while
the pointer is in the figure window.

figure

WindowButtonMo
tionFcn

End user moves the pointer within the
figure window.

figure

WindowButtonUp
Fcn

End user releases a mouse button. figure

WindowKeyPress
Fcn

End user presses a key while the
pointer is on the figure or any of its
child objects.

figure

WindowKeyRelea
seFcn

End user releases a key while the
pointer is on the figure or any of its
child objects.

figure

WindowScrollWh
eelFcn

End user turns the mouse wheel while
the pointer is on the figure.

figure

 Write Callbacks in GUIDE

19-3

GUIDE-Generated Callback Functions and Property Values
How GUIDE Manages Callback Functions and Properties

After you add a uicontrol, uimenu, or uicontextmenu component to your UI, but before you save
it, GUIDE populates the Callback property with the value, %automatic. This value indicates that
GUIDE will generate a name for the callback function.

When you save your UI, GUIDE adds an empty callback function definition to your code file, and it
sets the control’s Callback property to be an anonymous function. This function definition is an
example of a GUIDE-generated callback function for a push button.
function pushbutton1_Callback(hObject,eventdata,handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

end

If you save this UI with the name, myui, then GUIDE sets the push button’s Callback property to
the following value:
@(hObject,eventdata)myui('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

This is an anonymous function that serves as a reference to the function, pushbutton1_Callback.
This anonymous function has four input arguments. The first argument is the name of the callback
function. The last three arguments are provided by MATLAB, and are discussed in the section,
“GUIDE Callback Syntax” on page 19-4.

Note GUIDE does not automatically generate callback functions for other UI components, such as
tables, panels, or button groups. If you want any of these components to execute a callback function,
then you must create the callback by right-clicking on the component in the layout, and selecting an
item under View Callbacks in the context menu.

GUIDE Callback Syntax
All callbacks must accept at least three input arguments:

• hObject — The UI component that triggered the callback.
• eventdata — A variable that contains detailed information about specific mouse or keyboard

actions.
• handles — A struct that contains all the objects in the UI. GUIDE uses the guidata function to

store and maintain this structure.

For the callback function to accept additional arguments, you must put the additional arguments at
the end of the argument list in the function definition.

The eventdata Argument

The eventdata argument provides detailed information to certain callback functions. For example, if
the end user triggers the KeyPressFcn, then MATLAB provides information regarding the specific
key (or combination of keys) that the end user pressed. If eventdata is not available to the callback
function, then MATLAB passes it as an empty array. The following table lists the callbacks and
components that use eventdata.

19 Programming a GUIDE App

19-4

Callback Property Name Component
WindowKeyPressFcn
WindowKeyReleaseFcn
WindowScrollWheel

figure

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup
CellEditCallback
CellSelectionCallback

uitable

Share Data Among GUIDE Callbacks
To create controls, menus, and graphics objects in your app that are interdependent, you must
explicitly share data with the parts of your app that need to access the component.

Method Description Requirements and Trade-Offs
Share UserData Get or set property values directly

through the component object.

All UI components have a UserData
property that can store any MATLAB
data.

• Requires access to the component
to set or retrieve the properties.

• UserData holds only one variable
at a time, but you can store multiple
values as a struct array or cell
array.

Share Application
Data

Associate data with a specific
component using the setappdata
function. You can access it later using
the getappdata function.

• Requires access to the component
to set or retrieve the application
data.

• Can share multiple variables.
Use guidata Share data with the figure window

using the guidata function.
• Stores or retrieves the data through

any UI component.
• Stores only one variable at a time,

but you can store multiple values as
a struct array or cell array.

Share UserData in GUIDE Apps

UI components contain useful information in their properties. For example, you can find the current
position of a slider by querying its Value property. In addition, all components have a UserData
property, which can store any MATLAB variable. All callback functions can access the value stored in
the UserData property as long as those functions can access the component.

To set up a GUIDE app for sharing slider data with the UserData property, perform these steps:

1 In the Command Window, type guide to open a new blank GUI.
2 Display the names of the UI components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

 Write Callbacks in GUIDE

19-5

3 Select the push button tool from the component palette at the left side of the Layout Editor and
drag it into the layout area.

4 Select the slider tool from the component palette at the left side of the Layout Editor and drag it
into the layout area.

5 Select File > Save. Save the UI as myslider.fig. MATLAB opens the code file in the Editor.
6 Set the initial value of the UserData property in the opening function, myslider_OpeningFcn.

This function executes just before the UI is visible to users.

In myslider_OpeningFcn, insert these commands immediately after the command,
handles.output = hObject.

data = struct('val',0,'diffMax',1);
set(handles.slider1,'UserData',data);

After you add the commands, myslider_OpeningFcn looks like this.

function myslider_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to junk (see VARARGIN)

% Choose default command line output for myslider
handles.output = hObject;
data = struct('val',0,'diffMax',1);
set(handles.slider1,'UserData',data);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes myslider wait for user response
% uiwait(handles.figure1);

Notice that handles is an input argument to myslider_OpeningFcn. The handles variable is
a structure that contains all the components in the UI. Each field in this structure corresponds to
a separate component. Each field name matches the Tag property of the corresponding
component. Thus, handles.slider1 is the slider component in this UI. The command,
set(handles.slider1,'UserData',data) stores the variable, data, in the UserData
property of the slider.

7 Add code to the slider callback for modifying the data. Add these commands to the end of the
function, slider1_Callback.

maxval = get(hObject,'Max');
sval = get(hObject,'Value');
diffMax = maxval - sval;
data = get(hObject,'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject,'UserData',data);

After you add the commands, slider1_Callback looks like this.

% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)

19 Programming a GUIDE App

19-6

% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
maxval = get(hObject,'Max');
sval = get(hObject,'Value');
diffMax = maxval - sval;
data = get(hObject,'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject,'UserData',data);

Notice that hObject is an input argument to the slider1_Callback function. hObject is
always the component that triggers the callback (the slider, in this case). Thus,
set(hObject,'UserData',data), stores the data variable in the UserData property of the
slider.

8 Add code to the push button callback for retrieving the data. Add these commands to the end of
the function, pushbutton1_Callback.

% Get UserData from the slider
data = get(handles.slider1,'UserData');
currentval = data.val;
diffval = data.diffMax;
display([currentval diffval]);

After you add the commands, pushbutton1_Callback looks like this.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get UserData from the slider
data = get(handles.slider1,'UserData');
currentval = data.val;
diffval = data.diffMax;
display([currentval diffval]);

This code uses the handles structure to access the slider. The command, data =
get(handles.slider1,'UserData'), gets the slider’s UserData property. Then, the
display function displays the stored values.

9 Save your code by pressing Save in the Editor Toolstrip.

Share Application Data in GUIDE Apps

To store application data, call the setappdata function:

setappdata(obj,name,value);

The first input, obj, is the component object in which to store the data. The second input, name, is a
friendly name that describes the value. The third input, value, is the value you want to store.

To retrieve application data, use the getappdata function:

 Write Callbacks in GUIDE

19-7

data = getappdata(obj,name);

The component, obj, must be the component object containing the data. The second input, name,
must match the name you used to store the data. Unlike the UserData property, which only holds
only one variable, you can use setappdata to store multiple variables.

To set up a GUIDE app for sharing application data, perform these steps:

1 In the Command Window, type guide to open a new blank GUI.
2 Display the names of the UI components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

3 Select the push button tool from the component palette at the left side of the Layout Editor and
drag it into the layout area.

4 Select the slider tool from the component palette at the left side of the Layout Editor and drag it
into the layout area.

5 Select File > Save. Save the UI as myslider.fig. MATLAB opens the code file in the Editor.
6 Set the initial value of the application data in the opening function, myslider_OpeningFcn.

This function executes just before the UI is visible to users. In myslider_OpeningFcn, insert
these commands immediately after the command, handles.output = hObject.

setappdata(handles.figure1,'slidervalue',0);
setappdata(handles.figure1,'difference',1);

After you add the commands, myslider_OpeningFcn looks like this.

function myslider_OpeningFcn(hObject,eventdata,handles,varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to junk (see VARARGIN)

% Choose default command line output for junk
handles.output = hObject;
setappdata(handles.figure1,'slidervalue',0);
setappdata(handles.figure1,'difference',1);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes junk wait for user response (see UIRESUME)
% uiwait(handles.figure1);

Notice that handles is an input argument to myslider_OpeningFcn. The handles variable is
a structure that contains all the components in the UI. Each field in this structure corresponds to
a separate component. Each field name matches the Tag property of the corresponding
component. In this case, handles.figure1 is the figure object. Thus, setappdata can use this
figure object to store the data.

7 Add code to the slider callback for changing the data. Add these commands to the end of the
function, slider1_Callback.

19 Programming a GUIDE App

19-8

maxval = get(hObject,'Max');
currval = get(hObject,'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figure1,'slidervalue',currval);
setappdata(handles.figure1,'difference',diffMax);

After you add the commands, slider1_Callback looks like this.

function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
maxval = get(hObject,'Max');
currval = get(hObject,'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figure1,'slidervalue',currval);
setappdata(handles.figure1,'difference',diffMax);

This callback function has access to the handles structure, so the setappdata commands store
the data in handles.figure1.

8 Add code to the push button callback for retrieving the data. Add these commands to the end of
the function, pushbutton1_Callback.

% Retrieve application data
currentval = getappdata(handles.figure1,'slidervalue');
diffval = getappdata(handles.figure1,'difference');
display([currentval diffval]);

After you add the commands, pushbutton1_Callback looks like this.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Retrieve application data
currentval = getappdata(handles.figure1,'slidervalue');
diffval = getappdata(handles.figure1,'difference');
display([currentval diffval]);

This callback function has access to the handles structure, so the getappdata commands
retrieve the data from handles.figure1.

9 Save your code by pressing Save in the Editor Toolstrip.

Use guidata to Store and Share Data in GUIDE Apps

GUIDE uses the guidata function to store a structure called handles, which contains all the UI
components. MATLAB passes the handles array to every callback function. If you want to use
guidata to share additional data, then add fields to the handles structure in the opening function.
The opening function is a function defined near the top of your code file that has _OpeningFcn in the
name.

 Write Callbacks in GUIDE

19-9

To modify your data in a callback function, modify the handles structure, and then store it using the
guidata function. This slider callback function shows how to modify and store the handles
structure in a GUIDE callback function.

function slider1_Callback(hObject, eventdata,handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
 handles.myvalue = 2;
 guidata(hObject,handles);
end

GUIDE Example: Share Slider Data Using guidata
Here is a prebuilt GUIDE app that uses the guidata function to share data between a slider and a
text field. When you move the slider, the number displayed in the text field changes to show the new
slider position.

GUIDE Example: Share Data Between Two Apps
Here is a prebuilt GUIDE app that uses application data and the guidata function to share data
between two dialog boxes. When you enter text in the second dialog box and click OK, the button
label changes in the first dialog box.

19 Programming a GUIDE App

19-10

In changeme_main.m, the buttonChangeMe_Callback function executes this command to display
the second dialog box:

changeme_dialog('changeme_main', handles.figure)

The handles.figure input argument is the Figure object for the changeme_main dialog box.

The changeme_dialog function retrieves the handles structure from the Figure object. Thus, the
entire set of components in the changeme_main dialog box is available to the second dialog box.

GUIDE Example: Share Data Among Three Apps
Here is a prebuilt GUIDE app that uses guidata and UserData to share data among three app
windows. The large window is an icon editor that accepts information from the tool palette and color
palette windows.

 Write Callbacks in GUIDE

19-11

In guide_inconeditor.m, the function guide_iconeditor_OpeningFcn contains this command:

colorPalette = guide_colorpalette('iconEditor', hObject)

The arguments are:

• 'iconEditor' specifies that a callback in the guide_iconEditor window triggered the execution
of the function.

• hObject is the Figure object for the guide_iconEditor window.
• colorPalette is the Figure object for the guide_colorPalette window.

Similarly, guide_iconeditor_OpeningFcn calls the guide_toolpalette function with similar
input and output arguments.

19 Programming a GUIDE App

19-12

Passing the Figure object between these functions allows the guide_iconEditor window to access
the handles structure of the other two windows. Likewise, the other two windows can access the
handles structure for the guide_iconEditor window.

Renaming and Removing GUIDE-Generated Callbacks
Renaming Callbacks

GUIDE creates the name of a callback function by combining the component’s Tag property and the
callback property name. If you change the component’s Tag value, then GUIDE changes the
callback's name the next time you save the UI.

If you decide to change the Tag value after saving the UI, then GUIDE updates the following items
(assuming that all components have unique Tag values).

• Component's callback function definition
• Component’s callback property value
• References in the code file to the corresponding field in the handles structure

To rename a callback function without changing the component’s Tag property:

1 Change the name in the callback function definition.
2 Update the component’s callback property by changing the first argument passed to the

anonymous function. For example, the original callback property for a push button might look
like this:

@(hObject,eventdata)myui('pushbutton1_Callback',...
 hObject,eventdata,guidata(hObject))

In this example, you must change, 'pushbutton1_Callback' to the new function name.
3 Change all other references to the old function name to the new function name in the code file.

Deleting Callbacks

You can delete a callback function when you want to remove or change the function that executes
when the end user performs a specific action. To delete a callback function:

1 Search and replace all instances that refer to the callback function in your code.
2 Open the UI in GUIDE and replace all instances that refer to the callback function in the Property

Inspector.
3 Delete the callback function.

See Also

Related Examples
• “Callbacks for Specific Components” on page 19-14
• “Anonymous Functions”
• “Share Data Among Callbacks” on page 11-9
• “Callbacks in App Designer” on page 6-15

 Write Callbacks in GUIDE

19-13

Callbacks for Specific Components

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Coding the behavior of a UI component involves specific tasks that are unique to the type of
component you are working with. This topic contains simple examples of callbacks for each type of
component. For general information about coding callbacks, see “Write Callbacks in GUIDE” on page
19-2 or “Write Callbacks for Apps Created Programmatically” on page 11-2.

How to Use the Example Code
If you are working in GUIDE, then right-click on the component in your layout and select the
appropriate callback property from the View Callbacks menu. Doing so creates an empty callback
function that is automatically associated with the component. The specific function name that GUIDE
creates is based on the component’s Tag property, so your function name might be slightly different
than the function name in the example code. Do not change the function name that GUIDE creates in
your code. To use the example code in your app, copy the code from the example’s function body into
your function’s body.

Push Button
This code is an example of a push button callback function in GUIDE. Associate this function with the
push button Callback property to make it execute when the end user clicks on the push button.

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Goodbye');
close(gcf);

The first line of code, display('Goodbye'), displays 'Goodbye' in the Command Window. The
next line gets the UI window using gcf and then closes it.

Toggle Button
This code is an example of a toggle button callback function in GUIDE. Associate this function with
the toggle button Callback property to make it execute when the end user clicks on the toggle
button.

function togglebutton1_Callback(hObject,eventdata,handles)
% hObject handle to togglebutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of togglebutton1

19 Programming a GUIDE App

19-14

button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
 display('down');
elseif button_state == get(hObject,'Min')
 display('up');
end

The toggle button’s Value property matches the Min property when the toggle button is up. The
Value changes to the Max value when the toggle button is depressed. This callback function gets the
toggle button’s Value property and then compares it with the Max and Min properties. If the button
is depressed, then the function displays 'down' in the Command Window. If the button is up, then
the function displays 'up'.

Radio Button
This code is an example of a radio button callback function in GUIDE. Associate this function with the
radio button Callback property to make it execute when the end user clicks on the radio button.

function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1

if (get(hObject,'Value') == get(hObject,'Max'))
 display('Selected');
else
 display('Not selected');
end

The radio button’s Value property matches the Min property when the radio button is not selected.
The Value changes to the Max value when the radio button is selected. This callback function gets
the radio button’s Value property and then compares it with the Max and Min properties. If the
button is selected, then the function displays 'Selected' in the Command Window. If the button is
not selected, then the function displays 'Not selected'.

Note Use a button group to manage exclusive selection behavior for radio buttons. See “Button
Group” on page 19-20 for more information.

Check Box
This code is an example of a check box callback function in GUIDE. Associate this function with the
check box Callback property to make it execute when the end user clicks on the check box.

function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox1

if (get(hObject,'Value') == get(hObject,'Max'))
 display('Selected');

 Callbacks for Specific Components

19-15

else
 display('Not selected');
end

The check box’s Value property matches the Min property when the check box is not selected. The
Value changes to the Max value when the check box is selected. This callback function gets the
check box’s Value property and then compares it with the Max and Min properties. If the check box
is selected, the function displays 'Selected' in the Command Window. If the check box is not
selected, it displays 'Not selected'.

Edit Text Field
This code is an example of a callback for an edit text field in GUIDE. Associate this function with the
uicontrol’s Callback property to make it execute when the end user types inside the text field.

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents as double
input = get(hObject,'String');
display(input);

When the user types characters inside the text field and presses the Enter key, the callback function
retrieves those characters and displays them in the Command Window.

To enable users to enter multiple lines of text, set the Max and Min properties to numeric values that
satisfy Max - Min > 1. For example, set Max to 2, and Min to 0 to satisfy the inequality. In this case,
the callback function triggers when the end user clicks on an area in the UI that is outside of the text
field.

Retrieve Numeric Values

If you want to interpret the contents of an edit text field as numeric values, then convert the
characters to numbers using the str2double function. The str2double function returns NaN for
nonnumeric input.

This code is an example of an edit text field callback function that interprets the user’s input as
numeric values.

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents as a double
input = str2double(get(hObject,'String'));
if isnan(input)
 errordlg('You must enter a numeric value','Invalid Input','modal')
 uicontrol(hObject)
 return
else

19 Programming a GUIDE App

19-16

 display(input);
end

When the end user enters values into the edit text field and presses the Enter key, the callback
function gets the value of the String property and converts it to a numeric value. Then, it checks to
see if the value is NaN (nonnumeric). If the input is NaN, then the callback presents an error dialog
box.

Slider
This code is an example of a slider callback function in GUIDE. Associate this function with the slider
Callback property to make it execute when the end user moves the slider.

function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine...
slider_value = get(hObject,'Value');
display(slider_value);

When the end user moves the slider, the callback function gets the current value of the slider and
displays it in the Command Window. By default, the slider’s range is [0, 1]. To modify the range, set
the slider’s Max and Min properties to the maximum and minimum values, respectively.

List Box
Populate Items in the List Box

If you are developing an app using GUIDE, use the list box CreateFcn callback to add items to the
list box.

This code is an example of a list box CreateFcn callback that populates the list box with the items,
Red, Green, and Blue.

function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: listbox controls usually have a white background on Windows.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',{'Red';'Green';'Blue'});

The last line, set(hObject,'String',{'Red';'Green';'Blue'}), populates the contents of the
list box.

Change the Selected Item

When the end user selects a list box item, the list box’s Value property changes to a number that
corresponds to the item’s position in the list. For example, a value of 1 corresponds to the first item in

 Callbacks for Specific Components

19-17

the list. If you want to change the selection in your code, then change the Value property to another
number between 1 and the number of items in the list.

For example, you can use the handles structure in GUIDE to access the list box and change the
Value property:

set(handles.listbox1,'Value',2)

The first argument, handles.listbox1, might be different in your code, depending on the value of
the list box Tag property.

Write the Callback Function

This code is an example of a list box callback function in GUIDE. Associate this function with the list
box Callback property to make it execute when a selects an item in the list box.

function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns contents
% contents{get(hObject,'Value')} returns selected item from listbox1
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);

When the end user selects an item in the list box, the callback function performs the following tasks:

• Gets all the items in the list box and stores them in the variable, items.
• Gets the numeric index of the selected item and stores it in the variable, index_selected.
• Gets the value of the selected item and stores it in the variable, item_selected.
• Displays the selected item in the MATLAB Command Window.

The example, “Interactive List Box App in GUIDE” on page 20-6 shows how to populate a list box
with directory names.

Pop-Up Menu
Populate Items in the Pop-Up Menu

If you are developing an app using GUIDE, use the pop-up menu CreateFcn callback to add items to
the pop-up menu.

This code is an example of a pop-up menu CreateFcn callback that populates the menu with the
items, Red, Green, and Blue.

function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: popupmenu controls usually have a white background on Windows.
if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))

19 Programming a GUIDE App

19-18

 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',{'Red';'Green';'Blue'});

The last line, set(hObject,'String',{'Red';'Green';'Blue'}), populates the contents of the
pop-up menu.

Change the Selected Item

When the end user selects an item, the pop-up menu’s Value property changes to a number that
corresponds to the item’s position in the menu. For example, a value of 1 corresponds to the first item
in the list. If you want to change the selection in your code, then change the Value property to
another number between 1 and the number of items in the menu.

For example, you can use the handles structure in GUIDE to access the pop-up menu and change
the Value property:

set(handles.popupmenu1,'Value',2)

The first argument, handles.popupmenu1, might be different in your code, depending on the value
of the pop-up menu Tag property.

Write the Callback Function

This code is an example of a pop-up menu callback function in GUIDE. Associate this function with
the pop-up menu Callback property to make it execute when the end user selects an item from the
menu.

function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns contents...
% contents{get(hObject,'Value')} returns selected item...
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);

When the user selects an item in the pop-up menu, the callback function performs the following tasks:

• Gets all the items in the pop-up menu and stores them in the variable, items.
• Gets the numeric index of the selected item and stores it in the variable, index_selected.
• Gets the value of the selected item and stores it in the variable, item_selected.
• Displays the selected item in the MATLAB Command Window.

Panel
Make the Panel Respond to Button Clicks

You can create a callback function that executes when the end user right-clicks or left-clicks on the
panel. If you are working in GUIDE, then right-click the panel in the layout and select View
Callbacks > ButtonDownFcn to create the callback function.

 Callbacks for Specific Components

19-19

This code is an example of a ButtonDownFcn callback in GUIDE.

function uipanel1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to uipanel1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Mouse button was pressed');

When the end user clicks on the panel, this function displays the text, 'Mouse button was
pressed', in the Command Window.

Resize the Window and Panel

By default, GUIDE UIs cannot be resized, but you can override this behavior by selecting Tools >
GUI Options and setting Resize behavior to Proportional.

When the UI window is resizable, the position of components in the window adjust as the user resizes
it. If you have a panel in your UI, then the panel’s size will change with the window’s size. Use the
panel’s SizeChangedFcn callback to make your app perform specific tasks when the panel resizes.

This code is an example of a panel’s SizeChangedFcn callback in a GUIDE app. When the user
resizes the window, this function modifies the font size of static text inside the panel.

function uipanel1_SizeChangedFcn(hObject, eventdata, handles)
% hObject handle to uipanel1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject,'Units','Points')
panelSizePts = get(hObject,'Position');
panelHeight = panelSizePts(4);
set(hObject,'Units','normalized');
newFontSize = 10 * panelHeight / 115;
texth = findobj('Tag','text1');
set(texth,'FontSize',newFontSize);

If your UI contains nested panels, then they will resize from the inside-out (in child-to-parent order).

Note To make the text inside a panel resize automatically, set the fontUnits property to
'normalized'.

Button Group
Button groups are similar to panels, but they also manage exclusive selection of radio buttons and
toggle buttons. When a button group contains multiple radio buttons or toggle buttons, the button
group allows the end user to select only one of them.

Do not code callbacks for the individual buttons that are inside a button group. Instead, use the
button group’s SelectionChangedFcn callback to respond when the end user selects a button.

This code is an example of a button group SelectionChangedFcn callback that manages two radio
buttons and two toggle buttons.

function uibuttongroup1_SelectionChangedFcn(hObject, eventdata, handles)
% hObject handle to the selected object in uibuttongroup1
% eventdata structure with the following fields

19 Programming a GUIDE App

19-20

% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty
% NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)
switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.
 case 'radiobutton1'
 display('Radio button 1');
 case 'radiobutton2'
 display('Radio button 2');
 case 'togglebutton1'
 display('Toggle button 1');
 case 'togglebutton2'
 display('Toggle button 2');
end

When the end user selects a radio button or toggle button in the button group, this function
determines which button the user selected based on the button’s Tag property. Then, it executes the
code inside the appropriate case.

Note The button group’s SelectedObject property contains a handle to the button that user
selected. You can use this property elsewhere in your code to determine which button the user
selected.

Menu Item
The code in this section contains example callback functions that respond when the end user selects
Edit > Copy > To File in this menu.

 Callbacks for Specific Components

19-21

% --
function edit_menu_Callback(hObject, eventdata, handles)
% hObject handle to edit_menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Edit menu selected');

% --
function copy_menu_item_Callback(hObject, eventdata, handles)
% hObject handle to copy_menu_item (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Copy menu item selected');

% --
function tofile_menu_item_Callback(hObject, eventdata, handles)
% hObject handle to tofile_menu_item (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,path] = uiputfile('myfile.m','Save file name');

The function names might be different in your code, depending on the tag names you specify in the
GUIDE Menu Editor.

19 Programming a GUIDE App

19-22

The callback functions trigger in response to these actions:

• When the end user selects the Edit menu, the edit_menu_Callback function displays the text,
'Edit menu selected', in the MATLAB Command Window.

• When the end user hovers the mouse over the Copy menu item, the
copy_menu_item_Callback function displays the text, 'Copy menu item selected', in the
MATLAB Command Window.

• When the end user clicks and releases the mouse button on the To File menu item, the
tofile_menu_item_Callback function displays a dialog box that prompts the end user to select
a destination folder and file name.

The tofile_menu_item_Callback function calls the uiputfile function to prompt the end user
to supply a destination file and folder. If you want to create a menu item that prompts the user for an
existing file, for example, if your UI has an Open File menu item, then use the uigetfile function.

When you create a cascading menu like this one, the intermediate menu items trigger when the
mouse hovers over them. The final, terminating, menu item triggers when the mouse button releases
over the menu item.

How to Update a Menu Item Check

You can add a check mark next to a menu item to indicate that an option is enabled. In GUIDE, you
can select Check mark this item in the Menu Editor to make the menu item checked by default.
Each time the end user selects the menu item, the callback function can turn the check on or off.

This code shows how to change the check mark next to a menu item.

if strcmp(get(hObject,'Checked'),'on')
 set(hObject,'Checked','off');
else
 set(hObject,'Checked','on');
end

The strcmp function compares two character vectors and returns true when they match. In this
case, it returns true when the menu item’s Checked property matches the character vector, 'on'.

See “Create Menus for GUIDE Apps” on page 18-40 for more information about creating menu items
in GUIDE.

Table
This code is an example of the table callback function, CellSelectionCallback. Associate this
function with the table CellSelectionCallback property to make it execute when the end user
selects cells in the table.

function uitable1_CellSelectionCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) currently selected
% handles structure with handles and user data (see GUIDATA)
data = get(hObject,'Data');
indices = eventdata.Indices;
r = indices(:,1);
c = indices(:,2);

 Callbacks for Specific Components

19-23

linear_index = sub2ind(size(data),r,c);
selected_vals = data(linear_index);
selection_sum = sum(sum(selected_vals))

When the end user selects cells in the table, this function performs the following tasks:

• Gets all the values in the table and stores them in the variable, data.
• Gets the indices of the selected cells. These indices correspond to the rows and columns in data.
• Converts the row and column indices into linear indices. The linear indices allow you to select

multiple elements in an array using one command.
• Gets the values that the end user selected and stores them in the variable, selected_vals.
• Sums all the selected values and displays the result in the Command Window.

This code is an example of the table callback function, CellEditCallback. Associate this function
with the table CellEditCallback property to make it execute when the end user edits a cell in the
table.

function uitable1_CellEditCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) edited
% PreviousData: previous data for the cell(s) edited
% EditData: string(s) entered by the user
% NewData: EditData or its converted form set on the Data property.
% Empty if Data was not changed
% Error: error string when failed to convert EditData
data = get(hObject,'Data');
data_sum = sum(sum(data))

When the end user finishes editing a table cell, this function gets all the values in the table and
calculates the sum of all the table values. The ColumnEditable property must be set to true in at
least one column to allow the end user to edit cells in the table.

Axes
The code in this section is an example of an axes ButtonDownFcn that triggers when the end user
clicks on the axes.

19 Programming a GUIDE App

19-24

function axes1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
pt = get(hObject,'CurrentPoint')

The coordinates of the pointer display in the MATLAB Command Window when the end user clicks on
the axes (but not when that user clicks on another graphics object parented to the axes).

Note Most MATLAB plotting functions clear the axes and reset a number of axes properties,
including the ButtonDownFcn, before plotting data. To create an interface that lets the end user plot
data interactively, consider providing a component such as a push button to control plotting. Such
components’ properties are unaffected by the plotting functions. If you must use the axes
ButtonDownFcn to plot data, then use functions such as line, patch, and surface.

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 19-2
• “Write Callbacks for Apps Created Programmatically” on page 11-2

 Callbacks for Specific Components

19-25

• “Callbacks in App Designer” on page 6-15

19 Programming a GUIDE App

19-26

Examples of GUIDE UIs

• “GUIDE App With Parameters for Displaying Plots” on page 20-2
• “Interactive List Box App in GUIDE” on page 20-6
• “Automatically Refresh Plot in a GUIDE App” on page 20-9

20

GUIDE App With Parameters for Displaying Plots

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to examine and run a prebuilt GUIDE app. The app contains three edit fields
and two axes. The axes display the frequency and time domain representations of a function that is
the sum of two sine waves. The top two edit fields contain the frequency for each component sine
wave. The third edit field contains the time range and sampling rate for the plots.

Open and Run the Example
Open and run the app. Change the default values in the f1 and f2 fields to change the frequency for
each component sine wave. You can also change the three numbers (separated by colons) in the t
field. The first and last numbers specify the window of time to sample the function. The middle
number specifies the sampling rate.

Press the Plot button to see the graph of the function in the frequency and time domains.

20 Examples of GUIDE UIs

20-2

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the functions
discussed below.

f1_input_Callback and f2_input_Callback

The f1_input_Callback function executes when the user changes the value in the f1 edit field. The
f2_input_Callback function responds to changes in the f2 field, and it is almost identical to the
f1_input_Callback function. Both functions check for valid user input. If the value in the edit field
is invalid, the Plot button is disabled. Here is the code for the f1_input_Callback function.

f1 = str2double(get(hObject,'String'));
if isnan(f1) || ~isreal(f1)
 % Disable the Plot button and change its string to say why
 set(handles.plot_button,'String','Cannot plot f1');
 set(handles.plot_button,'Enable','off');
 % Give the edit text box focus so user can correct the error
 uicontrol(hObject);
else
 % Enable the Plot button with its original name
 set(handles.plot_button,'String','Plot');

 GUIDE App With Parameters for Displaying Plots

20-3

 set(handles.plot_button,'Enable','on');
end

t_input_Callback

The t_input_Callback function executes when the user changes the value in the t edit field. This
try block checks the value to make sure that it is numeric, that its length is between 2 and 1000, and
that the vector is monotonically increasing.

try
 t = eval(get(handles.t_input,'String'));
 if ~isnumeric(t)
 % t is not a number
 set(handles.plot_button,'String','t is not numeric')
 elseif length(t) < 2
 % t is not a vector
 set(handles.plot_button,'String','t must be vector')
 elseif length(t) > 1000
 % t is too long a vector to plot clearly
 set(handles.plot_button,'String','t is too long')
 elseif min(diff(t)) < 0
 % t is not monotonically increasing
 set(handles.plot_button,'String','t must increase')
 else
 % Enable the Plot button with its original name
 set(handles.plot_button,'String','Plot')
 set(handles.plot_button,'Enable','on')
 return
 end

 catch EM
 % Cannot evaluate expression user typed
 set(handles.plot_button,'String','Cannot plot t');
 uicontrol(hObject);
end

The catch block changes the label on the Plot button to indicate that an input value was invalid. The
uicontrol command sets the focus to the field that contains the erroneous value.

plot_button_Callback

The plot_button_Callback function executes when the user clicks the Plot button.

First, the callback gets the values in the three edit fields:

f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

Then callback uses values of f1, f2, and t to sample the function in the time domain and calculate
the Fourier transform. Then, the two plots are updated:

% Create frequency plot in proper axes
plot(handles.frequency_axes,f,m(1:257));
set(handles.frequency_axes,'XMinorTick','on');
grid(handles.frequency_axes,'on');

% Create time plot in proper axes

20 Examples of GUIDE UIs

20-4

plot(handles.time_axes,t,x);
set(handles.time_axes,'XMinorTick','on');
grid on

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 19-2
• “Share Data Among Callbacks” on page 11-9

 GUIDE App With Parameters for Displaying Plots

20-5

Interactive List Box App in GUIDE

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to examine and run a prebuilt GUIDE app. The app contains a list box that
displays the files in a particular folder. When you double-click an item in the list, MATLAB opens the
item.

Open and Run The Example
Open the app in GUIDE, and click the Run Figure (green play button) to run it.

20 Examples of GUIDE UIs

20-6

Alternatively, you can call the lbox2 function in the Command Window with the 'dir' name-value
pair argument. The name-value pair argument allows you to list the contents of any folder. For
example, this command lists the files in the C:\ folder on a Windows® system:

lbox2('dir','C:\')

Note: Before you can call lbox2 in the Command Window, you must save the GUIDE files in a folder
on your MATLAB® path. To save the files, select File > Save As in GUIDE.

Examine the Layout and Callback Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the functions
discussed below.

lbox2_OpeningFcn

The callback function lbox2_OpeningFcn executes just before the list box appears in the UI for the
first time. The following statements determine whether the user specified a path argument to the
lbox2 function.

if nargin == 3,
 initial_dir = pwd;
elseif nargin > 4
 if strcmpi(varargin{1},'dir')
 if exist(varargin{2},'dir')
 initial_dir = varargin{2};
 else
 errordlg('Input must be a valid directory','Input Argument Error!')
 return
 end
 else
 errordlg('Unrecognized input argument','Input Argument Error!');
 return;

 Interactive List Box App in GUIDE

20-7

 end
end

If nargin==3, then the only input arguments to lbox2_OpeningFcn are hObject, eventdata, and
handles. Therefore, the user did not specify a path when they called lbox2, so the list box shows
the contents of the current folder. If nargin>4, then the varargin input argument contains two
additional items (suggesting that the user did specify a path). Thus, subsequent if statements check
to see whether the path is valid.

listbox1_callback

The callback function listbox1_callback executes when the user clicks a list box item. This
statement, near the beginning of the function, returns true whenever the user double-clicks an item
in the list box:

if strcmp(get(handles.figure1,'SelectionType'),'open')

If that condition is true, then listbox1_callback determines which list box item the user
selected:

index_selected = get(handles.listbox1,'Value');
file_list = get(handles.listbox1,'String');
filename = file_list{index_selected};

The rest of the code in this callback function determines how to open the selected item based on
whether the item is a folder, FIG file, or another type of file:

 if handles.is_dir(handles.sorted_index(index_selected))
 cd (filename)
 load_listbox(pwd,handles)
 else
 [path,name,ext] = fileparts(filename);
 switch ext
 case '.fig'
 guide (filename)
 otherwise
 try
 open(filename)
 catch ex
 errordlg(...
 ex.getReport('basic'),'File Type Error','modal')
 end
 end
 end

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 19-2
• “Share Data Among Callbacks” on page 11-9

20 Examples of GUIDE UIs

20-8

Automatically Refresh Plot in a GUIDE App

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 3-7 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to examine and run a prebuilt GUIDE app. The app displays a surface plot,
adds random noise to the surface, and refreshes the plot at regular intervals. The app contains two
buttons: one that starts adding random noise to the plot, and another that stops adding noise. The
slider below the plot allows the user to set the refresh period between 0.01 and 2 seconds.

Open and Run the Example
Open and run the app. Move the slider to set the refresh interval between 0.01 and 2.0 seconds. Then
click the Start Randomizing button to start adding random noise to the plotted function. Click the
Stop Randomizing button to stop adding noise and refreshing the plot.

 Automatically Refresh Plot in a GUIDE App

20-9

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the functions
discussed below.

ex_guide_timergui_OpeningFcn

The ex_guide_timergui_OpeningFcn function executes when the app opens and starts running.
This command creates the timer object and stores it in the handles structure.

handles.timer = timer(...
 'ExecutionMode', 'fixedRate', ... % Run timer repeatedly.
 'Period', 1, ... % Initial period is 1 sec.
 'TimerFcn', {@update_display,hObject}); % Specify callback function.

The callback function for the timer is update_display, which is defined as a local function.

20 Examples of GUIDE UIs

20-10

update_display

The update_display function executes when the specified timer period elapses. The function gets
the values in the ZData property of the Surface object and adds random noise to it. Then it updates
the plot.

handles = guidata(hfigure);
Z = get(handles.surf,'ZData');
Z = Z + 0.1*randn(size(Z));
set(handles.surf,'ZData',Z);

periodsldr_Callback

The periodsldr_Callback function executes when the user moves the slider. It calculates the
timer period by getting the slider value and truncating it. Then it updates the label below the slider
and updates the period of the timer object.

% Read the slider value
period = get(handles.periodsldr,'Value');
% Truncate the value returned by the slider.
period = period - mod(period,.01);
% Set slider readout to show its value.
set(handles.slidervalue,'String',num2str(period))
% If timer is on, stop it, reset the period, and start it again.
if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
 set(handles.timer,'Period',period)
 start(handles.timer)
else % If timer is stopped, reset its period.
 set(handles.timer,'Period',period)
end

startbtn_Callback

The startbtn_Callback function calls the start method of the timer object if the timer is not
already running.

if strcmp(get(handles.timer, 'Running'), 'off')
 start(handles.timer);
end

stopbtn_Callback

The stopbtn_Callback function calls the stop method of the timer object if the timer is currently
running.

if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
end

figure1_CloseRequestFcn

The figure1_CloseRequestFcn callback executes when the user closes the app. The function
stops the timer object if it is running, deletes the timer object, and then deletes the figure window.

if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
end

 Automatically Refresh Plot in a GUIDE App

20-11

% Destroy timer
delete(handles.timer)
% Destroy figure
delete(hObject);

See Also

Related Examples
• “Timer Callback Functions”
• “Write Callbacks in GUIDE” on page 19-2

20 Examples of GUIDE UIs

20-12

App Packaging

13

Packaging GUIs as Apps

• “Get and Create Apps” on page 21-2
• “Package Apps From the MATLAB Toolstrip” on page 21-5
• “Package Apps in App Designer” on page 21-7
• “Modify Apps” on page 21-9
• “Ways to Share Apps” on page 21-10
• “MATLAB App Installer File — mlappinstall” on page 21-15
• “App Packaging Dependency Analysis” on page 21-16

21

Get and Create Apps

What Is an App?
A MATLAB app is a self-contained MATLAB program with a user interface that automates a task or
calculation. All the operations required to complete the task — getting data into the app, performing
calculations on the data, and displaying results are performed within the app. Apps are included in
many MATLAB products. In addition, you can design your own apps using the App Designer
development environment. The Apps tab on the MATLAB Toolstrip displays all currently installed
apps when you click the down arrow on the far right of the toolstrip.

Note You cannot run MATLAB apps using the MATLAB Runtime. Apps are for MATLAB to MATLAB
deployment. To run code using the MATLAB Runtime, the code must be packaged using MATLAB
Compiler.

Where to Get Apps
There are three key ways to get apps:

• MATLAB Products

Many MATLAB products, such as Curve Fitting Toolbox™, Signal Processing Toolbox™, and
Control System Toolbox™ include apps. In the apps gallery, you can see the apps that come with
your installed products.

• Create Your Own

App Designer is the recommended environment for building apps in MATLAB. You can create your
own MATLAB app and package it into a single file that you can distribute to others. The apps
packaging tool automatically finds and includes all the files needed for your app. It also identifies
any MATLAB products required to run your app.

You can share your app directly with other users, or share it with the MATLAB user community by
uploading it to the MATLAB File Exchange. When others install your app, they do not need to be
concerned with the MATLAB search path or other installation details.

Watch this video for an introduction to creating apps:

Packaging and Installing MATLAB Apps (2 min, 58 sec)
• Add-Ons

Apps (and other files) uploaded to the MATLAB File Exchange are available from within MATLAB:

21 Packaging GUIs as Apps

21-2

https://www.mathworks.com/videos/packaging-and-installing-matlab-apps-101563.html

1 On the Home tab, in the Environment section, click the Add-Ons arrow button.
2 Click Get Add-Ons.
3 Search for apps by name or descriptive text.

Why Create an App?
When you create an app package, MATLAB creates a single app installation file (.mlappinstall)
that enables you and others to install your app easily.

In particular, when you package an app, the app packaging tool:

• Performs a dependency analysis that helps you find and add the files your app requires.
• Reminds you to add shared resources and helper files.
• Stores information you provide about your app with the app package. This information includes a

description, a list of additional MATLAB products required by your app, and a list of supported
platforms.

• Automates app updates (versioning).

In addition when others install your app:

• It is a one-click installation.
• Users do not need to manage the MATLAB search path or other installation details.
• Your app appears alongside MATLAB toolbox apps in the apps gallery.

Best Practices and Requirements for Creating an App
Best practices:

• Write the app as an interactive application with a user interface written in the MATLAB language.
• All interaction with the app is through the user interface.
• Make the app reusable. Do not make it necessary for a user to restart the app to use different data

or inputs with it.
• Ensure the main function returns the handle of the main figure. (The main function created by

GUIDE returns the figure handle by default.)

Although not a requirement, doing so enables MATLAB to remove the app files from the search
path when users exit the app.

• If you want to share your app on MATLAB File Exchange, you must release it under a BSD license.
In addition, there are restrictions on the use of binary files such as MEX-files, p-coded files, or
DLLs.

Requirements:

• The main file must be a function (not a script).
• Because you invoke apps by clicking an icon in the apps gallery, the main function cannot have any

required input arguments. However, you can define optional input arguments. One way to define
optional input arguments is by using varargin.

 Get and Create Apps

21-3

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 21-5
• “Modify Apps” on page 21-9
• “Ways to Share Apps” on page 21-10

21 Packaging GUIs as Apps

21-4

Package Apps From the MATLAB Toolstrip
You can package any MATLAB app you create into a single file that can be easily shared with others.
When you package an app, MATLAB creates a single app installation file (.mlappinstall). The
installation file enables you and others to install your app and access it from the apps gallery without
concern for installation details or the MATLAB path.

Note As you enter information in the Package Apps dialog box, MATLAB creates and saves a .prj
file continuously. A .prj file contains information about your app, such as included files and a
description. Therefore, if you exit the dialog box before clicking the Package button, the .prj file
remains, even though a .mlappinstall file is not created. The .prj file enables you to quit and
resume the app creation process where you left off.

To create an app installation file:

1 On the desktop Toolstrip, on the Home tab, click the Add-Ons down-arrow.
2 Click Package App.
3 In the Package App dialog box, click Add main file and specify the file that you use to run the

app you created.

The main file must be callable with no input and must be a function or method, not a script.
MATLAB analyzes the main file to determine if there are other files used in the app. For more
information, see “App Packaging Dependency Analysis” on page 21-16.

Tip The main file must return the figure handle of your app for MATLAB to remove your app files
from the search path when users exit the app. For more information, see “What Is the MATLAB
Search Path?”

(Functions created by GUIDE return the figure handle.)
4 If your app requires additional files that are not listed under Files included through analysis,

add them by clicking Add files/folders.

You can include external interfaces, such as MEX-files or Java® in the .mlappinstall file,
although doing so can restrict the systems on which your app can run.

5 Describe your app.

a In the App Name field, type an app name.

If you install the app, MATLAB uses the name for the .mlappinstall file and to label your
app in the apps gallery.

b Optionally, specify an app icon.

Click the icon to the left of the App Name field to select an icon for your app or to specify a
custom icon. MATLAB automatically scales the icon for use in the Install dialog box, App
gallery, and quick access toolbar.

c Optionally, select a previously saved screenshot to represent your app.
d Optionally, specify author information.
e In the Description field, describe your app so others can decide if they want to install it.

 Package Apps From the MATLAB Toolstrip

21-5

f Identify the products on which your app depends.

Click the plus button on the right side of the Products field, select the products on which
your app depends, and then click Apply Changes. Keep in mind that your users must have
all of the dependent products installed on their systems.

After you create the package, when you select a .mlappinstall file in the Current Folder
browser, MATLAB displays the information you provided (except your email address and
company name) in the Current Folder browser Details panel. If you share your app in the
MATLAB Central File Exchange, the same information also displays there. The screenshot you
select, if any, represents your app in File Exchange.

6 Click Package.

As part of the app packaging process, MATLAB creates a .prj file that contains information
about your app, such as included files and a description. The .prj file enables you to update the
files in your app without requiring you to respecify descriptive information about the app.

7 In the Build dialog box, note the location of the installation file (.mlappinstall), and then click
Close.

For information on installing the app, see “Install Add-Ons from File”.

See Also

Related Examples
• “Modify Apps” on page 21-9
• “Ways to Share Apps” on page 21-10
• “MATLAB App Installer File — mlappinstall” on page 21-15
• “App Packaging Dependency Analysis” on page 21-16

21 Packaging GUIs as Apps

21-6

Package Apps in App Designer
After creating an app in App Designer, you can package it into a single installer file that you can
easily share with others. The underlying functionality for packaging apps in App Designer is the same
as the functionality that underlies the Add-Ons > Package App option in the MATLAB Toolstrip.

1 In App Designer, select the Designer tab. Then select Share > MATLAB App.

MATLAB opens the Package App dialog box.
2 The Package App dialog box has the following items pre-populated:

• The application name matches the name assigned to the figure in App Designer.
• The Main file is the MLAPP file you currently have selected for editing.
• The Output folder is the folder location where the installation file will be saved.
• The files listed under Files included through analysis include any files MATLAB detected

as dependent files. You can add additional files by clicking Add files/folders under Shared
resources and helper files.

 Package Apps in App Designer

21-7

3 Specify details to display in the apps gallery. Enter the appropriate information in these fields:
Author Name, Email, Company, Summary, and Description.

4 In the Products section, select the products that are required to run the app. Keep in mind that
your users must have all of the dependent products installed on their systems.

5 Click Select screenshot to specify an icon to display in the apps gallery.
6 Click Package to create the .mlappinstall file to share with your users. Later, if you click the

Package App button in the App Designer Toolstrip again, the Package App dialog box opens the
most recently modified .prj file for the MLAPP file.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 21-5
• “Ways to Share Apps” on page 21-10
• “MATLAB App Installer File — mlappinstall” on page 21-15
• “App Packaging Dependency Analysis” on page 21-16

21 Packaging GUIs as Apps

21-8

Modify Apps
When you update the files included in a .mlappinstall file, you recreate and overwrite the original
app. You cannot maintain two versions of the same app.

To update files in an app you created:

1 In the Current Folder browser, navigate to the folder containing the project file (.prj) that
MATLAB created when you packaged the app.

By default, MATLAB writes the .prj file to the folder that was the current folder when you
packaged the app.

2 From the Current Folder browser, double-click the project file for your app package,
appname.prj.

The Package App dialog box opens.
3 Adjust the information in the dialog box to reflect your changes by doing any or all of the

following:

• If you made code changes, add the main file again, and refresh the files included through
analysis.

• If your code calls additional files that are not included through analysis, add them.
• If you want anyone who installs your app over a previous installation to be informed that the

content is different, change the version.

Version numbers must be a combination of integers and periods, and can include up to three
periods — 2.3.5.2, for example.

Anyone who attempts to install a revision of your app over another version is notified that the
version number is changed. The user can continue or cancel the installation.

• If your changes introduce different product dependencies, adjust the product list in the
Products field. Keep in mind that your users must have all of the dependent products
installed on their systems.

4 Click Package.

See Also

Related Examples
• “Ways to Share Apps” on page 21-10
• “MATLAB App Installer File — mlappinstall” on page 21-15
• “App Packaging Dependency Analysis” on page 21-16

 Modify Apps

21-9

Ways to Share Apps
There are several ways to share your apps.

• “Share MATLAB Files Directly” on page 21-10 — This approach is the simplest way to share an
app, but your users must have MATLAB installed on their systems, as well as other MathWorks
products that your app depends on. They must also be familiar with executing commands in the
MATLAB Command Window and know how to manage the MATLAB path.

• “Package Your App” on page 21-12 — This approach uses the app packaging tool provided with
MATLAB. When your users install a packaged app, the app appears in the Apps tab in the
MATLAB Toolstrip. This approach is useful for sharing apps with larger audiences, or when your
users are less familiar with executing commands in the MATLAB Command Window or managing
the MATLAB path. As in the case of sharing MATLAB files directly, your users must have MATLAB
installed on their systems (as well as other MathWorks products that your app depends on).

• “Create a Deployed Web App” on page 21-13 — This approach lets you create apps that users
within an organization can run in their web browsers. To deploy a web app, you must have
MATLAB Compiler installed on your system. Your users must have a web browser installed that
can access your intranet, but they do not need to have MATLAB installed.

• “Create a Standalone Desktop Application” on page 21-13 — This approach lets you share
desktop apps with users that do not have MATLAB installed on their systems. To create the
standalone application, you must have MATLAB Compiler installed on your system. To run the
application, your users must have MATLAB Runtime installed on their systems. For more
information, see https://www.mathworks.com/products/compiler/matlab-runtime.html.

Share MATLAB Files Directly
If you created your app in GUIDE, share the .fig file, the .m file, and all other dependent files with
your users.

If you created your app programmatically, share all .m files and other dependent files with your users.

If you created your app in App Designer, share the .mlapp file and all other dependent files with your
users. To provide a richer file browsing experience for your users, provide a name, version, author,
summary, and description by clicking App Details in the Designer tab of the App Designer
toolstrip. The App Details dialog box also provides an option for specifying a screen shot. If you do
not specify a screen shot, App Designer captures and updates a screen shot automatically when you
run the app.

MATLAB provides your app details to some operating systems for display in their file browsers.
Specifying apps details also makes it easier to package and compile your apps. The .mlapp file
provides those details automatically to those interfaces.

21 Packaging GUIs as Apps

21-10

https://www.mathworks.com/products/compiler/matlab-runtime.html

To specify input arguments and whether your app can run multiple instances at a time or only a
single instance, expand the Code Options section and select from the available options.

 Ways to Share Apps

21-11

Package Your App
To package your app and make it accessible in the MATLAB Apps tab, create an .mlappinstall file
by following the steps in “Package Apps in App Designer” on page 21-7 or “Package Apps From the
MATLAB Toolstrip” on page 21-5. The resulting .mlappinstall file includes all dependent files.

You can share the .mlappinstall file directly with your users. To install it, they must double-click
the .mlappinstall file in the MATLAB Current Folder browser.

Alternatively, you can share your app as an add-on by uploading the .mlappinstall file to MATLAB
Central File Exchange. Your users can find and install your add-on from the MATLAB Toolstrip by
performing these steps:

1
In the MATLAB Toolstrip, on the Home tab, in the Environment section, click the Add-Ons
icon.

2 Find the add-on by browsing through available categories on the left side of the Add-On Explorer
window. Use the search bar to search for an add-on using a keyword.

3 Click the add-on to open its detailed information page.
4 On the information page, click Add to install the add-on.

21 Packaging GUIs as Apps

21-12

https://www.mathworks.com/matlabcentral/fileexchange/

Note Although .mlappinstall files can contain any files you specify, MATLAB Central File
Exchange places additional limitations on submissions. Your app cannot be submitted to File
Exchange when it contains any of the following files:

• MEX-files
• Other binary executable files, such as DLLs. (Data and image files are typically acceptable.)

Create a Deployed Web App
Web apps are MATLAB apps that can run in a web browser. You create an interactive MATLAB app
using App Designer, package it using MATLAB Compiler, and host it using either the development
version of MATLAB Web App Server™ in MATLAB Compiler or the MATLAB Web App Server product.
Each web app has a unique URL and can be accessed from a web browser using HTTP or HTTPS
protocols. The server has a home page listing all available hosted web apps. You share web apps by
sharing the unique URL to a web app or the URL to the home page of the server.

Creating web apps requires MATLAB Compiler, and only apps designed using App Designer can be
deployed as web apps. In addition, certain functionality is not supported in deployed web apps. For
more information, see “Web App Limitations and Unsupported Functionality” (MATLAB Compiler).

Once you have MATLAB Compiler on your system, package your MATLAB app into a web app from
within App Designer by clicking Share in the Designer tab and selecting Web App. You can
deploy your web app directly to the server by specifying the server URL in the packaging dialog. The
format of the server URL is: https://webAppServer:PortNumber/webapps/home/index.html.

The ability to directly upload your web app to a server is only supported in the MATLAB Web App
Server product and requires authentication to be enabled. For details, see “Authentication” (MATLAB
Web App Server).

For more information on web apps, see “Web Apps” (MATLAB Compiler).

Create a Standalone Desktop Application
Creating a standalone desktop application lets you share an app with users who do not have MATLAB
on their systems. However, you must have MATLAB Compiler installed on your system to create the
standalone application. Your users must have MATLAB Runtime on their systems to run the app.

Once you have MATLAB Compiler on your system, you can open the Application Compiler from within
App Designer by clicking Share in the Designer tab and selecting Standalone Desktop App.

If you used GUIDE or created your app programmatically, you can open the Application Compiler
from the MATLAB Toolstrip, on the Apps tab, by clicking the Application Compiler icon.

See “Create Standalone Application from MATLAB” (MATLAB Compiler) for instructions on using the
Application Compiler.

 Ways to Share Apps

21-13

See Also

Related Examples
• “Get and Create Apps” on page 21-2
• “Ways to Build Apps” on page 1-2

21 Packaging GUIs as Apps

21-14

MATLAB App Installer File — mlappinstall
A MATLAB app installer file, .mlappinstall, is an archive file for sharing an app you created using
MATLAB. A single app installer file contains everything necessary to install and run an app: the
source code, supporting data, information (such as product dependencies), and the app icon.

An .mlappinstall file is a compressed package that conforms to the Open Packaging Conventions
(OPC) interoperability standard. You can search for and install .mlappinstall files using your
operating system file browser. When you select an .mlappinstall file in Windows Explorer or Quick
Look (Mac OS), the browser displays properties for the file, such as Authors and Release. Use
these properties to search for .mlappinstall files. Use the Tags property to add custom
searchable text to the file.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 21-5

 MATLAB App Installer File — mlappinstall

21-15

App Packaging Dependency Analysis
When you create an app package, MATLAB analyzes your main file and attempts to include all the
files that your app uses. However, MATLAB is not guaranteed to find every dependent file. It does not
find files for functions that your code references as character vectors (for instance, as arguments to
eval, feval, and callback functions). In addition, MATLAB can include some files that the main file
never calls when it runs.

Dependency analysis searches for the following types of files:

• Executable files, such as MATLAB program files, P-files, Fig-files, and MEX-files.
• Files that your app accesses by calling standard and low-level I/O functions. These dependent files

include text files, spreadsheets, images, audio, video, and XML files.
• Files that your app accesses by calling any of these functions: audioinfo, audioread, csvread,

daqread, dlmread, fileread, fopen, imfinfo, importdata, imread, load, matfile,
mmfileinfo, open, readtable, type, VideoReader, xlsfinfo, xlsread, xmlread, and
xslt.

Dependency analysis does not search for Java classes, .jar files, or files stored in a scientific format
such as NetCDF or HDF. Click Add files/folders in the Package Apps dialog box to add these types of
files manually.

See Also
matlab.codetools.requiredFilesAndProducts

21 Packaging GUIs as Apps

21-16

	Introduction to Creating Apps
	About Apps in MATLAB Software
	Ways to Build Apps
	Build an App
	Build a Live Editor Task

	How to Create a App with GUIDE
	Files Generated by GUIDE
	Code Files and FIG-Files
	Code File Structure
	Adding Callback Templates to an Existing Code File
	About GUIDE-Generated Callbacks

	App Designer
	App Designer Basics
	Create and Run a Simple App Using App Designer
	Run the Tutorial
	Tutorial Steps for Creating the App

	GUIDE Migration Strategies
	Export GUIDE App to MATLAB File
	Migrate GUIDE App to App Designer

	Display Graphics in App Designer
	App Designer Graphics Overview
	Display Graphics on Existing Axes
	Display Graphics in Container
	Create Axes Programmatically
	Use Functions with No Target Argument
	Use Functions That Don't Support Automatic Resizing
	Unsupported Functionality

	App Designer Preferences

	Component Choices and Customizations
	App Building Components
	Common Components
	Axes
	Containers and Figure Tools
	Dialogs and Notifications
	Instrumentation
	Extensible Components
	Toolbox Components

	Table Array Data Types in App Designer Apps
	Logical Data
	Categorical Data
	Datetime Data
	Duration Data
	Nonscalar Data
	Missing Data Values
	Example: App that Displays a Table Array

	Add UI Components to App Designer Programmatically
	Create the Component and Assign the Callback
	Write the Callback
	Example: Confirmation Dialog Box with a Close Function
	Example: App that Populates Tree Nodes Based on a Data File

	Create HTML File That Can Trigger or Respond to Data Changes
	Include Setup Function in Your HTML File
	Sample HTML File
	Debug an HTML File

	App Layout
	Lay Out Apps in App Designer Design View
	Customize Components
	Align and Space Components
	Group Components
	Reorder Components
	Modify Tab Focus Order of Components
	Arrange Components in Containers
	Create and Edit Context Menus in App Designer

	Manage Resizable Apps in App Designer
	Resizing Graphics Objects with Normalized Position Units
	Alternatives to Default Auto-Resize Behaviors

	Use Grid Layout Managers in App Designer
	Add and Configure Grid Layout Manager
	Convert Components from Pixel-Based Positions to Grid Layout Manager
	Convert Components from Grid Layout Manager to Pixel-Based Positions
	Example: Convert Components to Use Grid Layout Manager Instead of Pixel-Based Positions

	Apps with Auto-Reflow
	What is Auto-Reflow?
	Create New App with Auto-Reflow
	Convert Existing App to Use Auto-Reflow
	Remove Auto-Reflow Behavior
	Example: App with Auto-Reflow

	App Programming
	Manage Code in App Designer Code View
	Manage Components, Functions, and Properties
	Identify Editable Sections of Code
	Program Your App
	Fix Code Problems and Run-Time Errors
	Personalize Code View Appearance

	Startup Tasks and Input Arguments in App Designer
	Create a startupFcn Callback
	Define Input App Arguments

	Create Multiwindow Apps in App Designer
	Overview of the Process
	Send Information to the Dialog Box
	Return Information to the Main App
	Manage Windows When They Close
	Example: Plotting App That Opens a Dialog Box

	Callbacks in App Designer
	Create Callback Functions
	Program Callback Functions
	Share Callbacks Between Multiple Components
	Create and Assign Callbacks Programmatically
	Search for Callbacks in Your Code
	Change or Disconnect Callbacks
	Delete Callbacks
	Example: App with a Slider Callback

	Reuse Code Using Helper Functions
	Create a Helper Function
	Managing Helper Functions
	Example: Helper Function that Initializes Plots and Displays Updated Data

	Share Data Within App Designer Apps
	Example: Share Plot Data and a Drop-Down List Selection

	Compatibility Between Different Releases of App Designer
	Save Copy As Versus Save As
	Opening Apps for Editing in a Newer Release

	Use One Callback for Multiple App Designer Components
	Example of a Shared Callback

	App Designer Examples
	App That Calculates and Plots Data Based on Numerical Input
	App with Auto-Reflow That Updates Plot Based on User Selections
	App That Uses Grid Layout to Manage Component Positions and Resizing
	App That Displays Data in a Hierarchy Using Tree
	Create App That Uses Multiple Axes to Display Results of Image Analysis
	Create Polar Axes Programmatically in an App
	Create App with a Table That Can Be Sorted and Edited Interactively
	Create App with Timer Object Configured Programmatically
	Create App with Timer Object that Queries Website Data
	Share Data in Multiwindow Apps
	Display HTML Elements Styled by a Cascading Style Sheet

	Advanced App Designer Examples
	Organize App Data Using MATLAB Classes
	Open App Designer App
	Write a MATLAB Class to Manage App Data
	Test Algorithm
	Share Data with App
	Pulse Generator App That Stores Data in a Class

	Create Responsive Apps
	Improve App Startup Time
	Improve App Update Time
	Improve App Resize Behavior
	Improve App Responsiveness to User Input
	Improve Performance of Graphics in Your App

	Improve App Startup Time
	Improve Startup Time in Apps with Multiple Tabs
	Improve Startup Time in Apps with Large Trees

	Find and Create UI Components and Charts
	Find Community-Authored Components and Charts
	Create Your Own Components and Charts

	Keyboard Shortcuts
	App Designer Keyboard Shortcuts
	Shortcuts Available Throughout App Designer
	Component Browser Shortcuts
	Design View Shortcuts
	Code View Shortcuts

	Create UIs Programmatically
	Lay Out a Programmatic UI
	Lay Out Apps Programmatically
	Manage Figure Size and Location
	Lay Out UI Components
	Change Front-to-Back Component Order

	Manage App Resize Behavior Programmatically
	Use a Grid Layout Manager
	Write Code to Manage Resize Behavior
	Turn Off Resizing of Specific Components
	Turn Off App Resizing Entirely

	DPI-Aware Behavior in MATLAB
	Visual Appearance
	Using Object Properties
	Using print, getframe, and publish Functions

	Create and Manage Callbacks Programmatically
	Write Callbacks for Apps Created Programmatically
	Callback Function Arguments
	Specify a Callback Function

	Share Data Among Callbacks
	Store App Data
	Access App Data From Callback Functions
	Access Data in UserData
	Pass Input Data to Callbacks
	Create Nested Callback Functions

	Interrupt Callback Execution
	Interrupted Callback Behavior
	Control Callback Interruption Behavior

	Developing Classes of UI Component Objects
	Develop Custom UI Components Programmatically
	Structure of a UI Component Class
	Constructor Method
	Public and Private Property Blocks
	Event Block
	Setup Method
	Update Method
	Example: Color Selector UI Component

	Manage Properties of Custom UI Components Programmatically
	Initialize Property Values
	Validate Property Values
	Customize the Property Display
	Optimize the update Method
	Example: Optimized Polynomial Fit UI Component with Customized Property Display

	Configure Custom UI Components for App Designer
	Custom UI Component Prerequisites
	Configure Custom UI Component
	View Configured UI Component in App Designer
	Reconfigure Custom UI Component
	Remove UI Component from App Designer
	Share Configured UI Component
	Troubleshoot Missing Custom UI Component

	Customize Properties of HTML UI Components
	Custom Component Overview
	RoundButton Class Implementation

	Create Custom UI Components in App Designer
	Create a Simple Custom UI Component in App Designer
	Component Creation Overview
	Design Component Appearance
	Design Component Interface
	Verify Component Behavior
	Configure Component for Use in Apps

	Define Custom UI Component Startup Tasks in App Designer
	Component Setup Overview
	Add PostSetupFcn Callback
	Example: Timer Component That Performs Startup Tasks

	Create Public Properties for Custom UI Components in App Designer
	Create New Public Property
	Configure Public Property
	Verify Public Property
	Full Example: FileSelector Component

	Create Callbacks for Custom UI Components in App Designer
	Relationship Between Events and Public Callbacks
	Create New Event
	Notify Event to Execute Callback
	Verify Callback
	Full Example: FileSelector Component

	Write Property Set Methods for Custom UI Components in App Designer
	IP Address Component Overview
	Create a Property Set Method
	Perform Custom Property Validation
	Verify Property Validation Behavior

	Modularize Your App by Creating a Custom UI Component
	Verify Behavior of Custom UI Components in App Designer
	Run Component
	Create Component from Command Window
	Add Component to App

	Create Custom UI Component with a Chart in App Designer
	Create Custom Button with Hover Effect Using HTML

	Transition or Maintain figure-Based Apps
	Update figure-Based Apps to Use uifigure
	Overview for Updating Your App
	Capabilities Only Available with UI Figures
	Differences Between figure-Based and uifigure-Based Apps

	Update App Figure and Containers
	Replace Calls to figure with uifigure
	Adjust Container Positions

	Update UIControl Objects and Callbacks
	Replace uicontrol Function Calls
	Update Component Properties
	Update Callbacks

	Update Dialog Boxes

	Examples of Programmatic Apps
	Create and Run a Simple Programmatic App
	Programmatic App That Displays a Table
	Style Cells in a Table UI Component
	Create Table UI Component
	Modify Background Color of Table Rows
	Display Icons in Table Cells
	Format Equations and Symbols in Table Column
	Remove Style

	Live Editor Task Development
	Live Editor Task Development Overview
	Define Live Editor Task Subclass
	Configure Live Editor Task Metadata
	Use Custom Live Editor Task

	Create Simple Live Editor Task
	Share Live Editor Tasks

	Create UIs with GUIDE
	GUIDE Preferences and Options
	GUIDE Preferences
	Set Preferences
	Confirmation Preferences
	Backward Compatibility Preference
	All Other Preferences

	GUIDE Options
	The GUI Options Dialog Box
	Resize Behavior
	Command-Line Accessibility
	Generate FIG-File and MATLAB File
	Generate FIG-File Only

	Lay Out a UI Using GUIDE
	Set the UI Window Size in GUIDE
	Prevent Existing Objects from Resizing with the Window
	Set the Window Position or Size to an Exact Value
	Maximize the Layout Area

	Add Components to the GUIDE Layout Area
	Place Components
	User Interface Controls
	Panels and Button Groups
	Axes
	Table
	Resize GUIDE UI Components

	Create Menus for GUIDE Apps
	Menus for the Menu Bar
	Context Menus

	Programming a GUIDE App
	Write Callbacks in GUIDE
	Callbacks for Different User Actions
	GUIDE-Generated Callback Functions and Property Values
	GUIDE Callback Syntax
	Share Data Among GUIDE Callbacks
	GUIDE Example: Share Slider Data Using guidata
	GUIDE Example: Share Data Between Two Apps
	GUIDE Example: Share Data Among Three Apps
	Renaming and Removing GUIDE-Generated Callbacks

	Callbacks for Specific Components
	How to Use the Example Code
	Push Button
	Toggle Button
	Radio Button
	Check Box
	Edit Text Field
	Slider
	List Box
	Pop-Up Menu
	Panel
	Button Group
	Menu Item
	Table
	Axes

	Examples of GUIDE UIs
	GUIDE App With Parameters for Displaying Plots
	Open and Run the Example
	Examine the Code

	Interactive List Box App in GUIDE
	Open and Run The Example
	Examine the Layout and Callback Code

	Automatically Refresh Plot in a GUIDE App
	Open and Run the Example
	Examine the Code

	App Packaging
	Packaging GUIs as Apps
	Get and Create Apps
	What Is an App?
	Where to Get Apps
	Why Create an App?
	Best Practices and Requirements for Creating an App

	Package Apps From the MATLAB Toolstrip
	Package Apps in App Designer
	Modify Apps
	Ways to Share Apps
	Share MATLAB Files Directly
	Package Your App
	Create a Deployed Web App
	Create a Standalone Desktop Application

	MATLAB App Installer File — mlappinstall
	App Packaging Dependency Analysis

